It shows the type of atoms/elements in a substance
Different types of atoms have different emission spectrum - a concept supported by Bohr quantum theory - hence one is able to identify elements in a substance using a method called spectroscopy.
Explanation:
When an electron jumps from a low energy orbital to a higher energy orbital in an atom, it absorbs a specific wavelength of electromagnetic radiation (This is called absorption spectrum). Vice versa, if the same electron jumps from a higher to a lower energy orbital it releases the equivalent quantum energy in electromagnetic wave (This is called emission spectrum). Different types of atoms of different elements have a unique spectrum identifier.
Learn More:
Learn more about spectroscopy;
brainly.com/question/3822641
brainly.com/question/13435562
#LearnWithBrainly
Nanowhiskers or cellulose nanofibers
are nano-structured cellulose produced by bacteria. They have relatively high
crystallinity and ability to form a dense network held together by
inter-fibrillar bonds that has the tendency to act as a barrier through their
film-forming properties to which they can repel stains on fabric.
<span> </span>
Answer:
i think mix im um 1s 6f 4d is correct answer
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
I would say mass lost by nuclear collisions. The mass defect is the mass difference between the mass of an atomic nucleus and the sum of the mass of its constituent particles. It equals the energy given off in the formation of the nucleus.