Answer:
Y= 2e^(5t)
Step-by-step explanation:
Taking Laplace of the given differential equation:
s^2+3s-10=0
s^2+5s-2s-10=0
s(s+5)-2(s+5) =0
(s-2) (s+5) =0
s=2, s=-5
Hence, the general solution will be:
Y=Ae^(-2t)+ Be^(5t)………………………………(D)
Put t = 0 in equation (D)
Y (0) =A+B
2 =A+B……………………………………… (i)
Now take derivative of (D) with respect to "t", we get:
Y=-2Ae^(-2t)+5Be^(5t) ....................... (E)
Put t = 0 in equation (E) we get:
Y’ (0) = -2A+5B
10 = -2A+5B ……………………………………(ii)
2(i) + (ii) =>
2A+2B=4 .....................(iii)
-2A+5B=10 .................(iv)
Solving (iii) and (iv)
7B=14
B=2
Now put B=2 in (i)
A=2-2
A=0
By putting the values of A and B in equation (D)
Y= 2e^(5t)
Answer:
12
Step-by-step explanation:
Have a Nice Day :)
Answer:
BF = 18
Step-by-step explanation:
In triangle BCD, H is the Centroid.
Centroid of a triangle divides the median in the ratio 2 : 1.
Therefore, BH : HF = 2 : 1
Let BH = 2x & HF = x
Since, HF = 6.... (given)
So, x = 6
2x = 2*6 = 12
BH = 12
Now,
BF = BH + HF = 12 + 6
BF = 18
Answer:
x= -1/12
Step-by-step explanation:
Because the random variable x follows a continuous uniform distribution from x=1 to x=5, therefore
p(x) = 1/4, x=[1, 5]
The value of p(x) ensures that the total area under the curve = 1.
The conditional probability p(x > 2.5 | x ≤ 4) is the shaded portion of the curve. Its value is
p(x > 2.5 | x ≤4) = (1/4)*(4 - 2.5) = 0.375
Answer: 0.375