Answer:
1.71x10²⁷
Explanation:
If we sum 1/2 of (3) + 1/2 of (1):
1/2 (3.) C(s) + 1/2O₂(g) ⇌ CO(g), K₃ = √2.10×10⁴⁷ = 4.58x10²³
1/2 (1) 1/2CO₂(g) + 3/2H₂(g) ⇌ 1/2CH₃OH(g) + 1/2H₂O(g), K₁ = √1.40×10² = 11.8
C(s) + 1/2O₂(g) +<u> 1/2CO₂(g) </u>+<u> 3/2H₂(g</u>) ⇌ 1/2CH₃OH(g) + <u>1/2H₂O(g)</u> + <u>CO(g)</u>
K' = 4.58x10²³ * 11.8 = 5.42x10²⁴
+1/2 (2):
<u>1/2 CO(g)</u> +<u> 1/2H₂O(g)</u> ⇌<u> 1/2CO₂(g)</u> + <u>1/2H₂</u> (g), K = √1.00×10⁵ = 316.2
C(s) + 1/2O₂(g) + H₂(g) ⇌ 1/2 CHO₃H(g) + 1/2CO(g)
K'' = 5.42x10²⁴* 316.2 =
<h3>1.71x10²⁷</h3>
Every cube would contain 1 milliliter of water, or .01 liter
Hi
I think it’s B
Hopefully this helps!!
Explanation:
Earlier, we located the valence electrons for elements Z < 20 by drawing modified Bohr structures. We can obtain these values quicker by referring to the roman numeral numbers above each family on the periodic table. The total number of valence electrons for an atom can vary between one and eight. If an element is located on the left side of the table (metal) and has less than three valence electrons, it will lose its valence in order to become stable and achieve an octet. In contrast, elements on the right side of the table (nonmetals) will gain up to eight electrons to achieve octet status.
The answer is true.
Explanation:
The balance of trade is nothing but the country's exports minus the country's imports.
Exports means, what you produce in the country and sell it to other countries, whereas imports means what you get or buy from the other countries.
When you export more than you import, you have trade surplus .In that case the income from exports are more than the money spent. So you have a trade surplus.
When you import then you have a trade deficit or your income is low. Most of the countries want a trade surplus.
But when the Income from exports and the money spent on imports are the same , the situation is that of balance of trade equilibrium, where the income from exports is equal to the money its residents pay for the imports.