Answer:
The law of conservation of mass states that in a closed system, mass is neither created nor destroyed during a chemical or physical reaction. The law of conservation of mass is applied whenever you balance a chemical equation.
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
It is applicable in a chemical when the the mass of the products in a chemical reaction is equal to the mass of the reactants.
But it is not applicable in a nuclear fusion as some of the mass is generated as energy.
Answer:
17.5609g
Explanation:
According to the question, a sample of mass 6.814 grams is added to another sample weighing 0.08753 grams. That is weight of sample 1 + weight of sample 2;
6.814 + 0.08753 = 6.90153grams
Next, the subsequent mixture is then divided into exactly 3 equal parts i.e. 6.90153grams divided by 3
= 6.90153/3
= 2.30051grams.
One of the equal parts is 2.30051grams, which is then multiplied by 7.6335 times I.e. 2.30051 × 7.6335 = 17.5609grams
Therefore, the final mass is 17.5609grams
Remember: energy is conserved in a chemical reaction (visualize the reaction and question whether heat lies on reactant side (left) or product side (right))
-exothermic- heat is released (heat is on the product side)
>forming an ionic lattice (SALT)- mixture of Na and Cl results in a more stable ionic lattice, causing this reaction to be exothermic
>burning wood
-endothermic- heat is absorbed (heat is on the reactant side)
> cooking an egg
D. It is the heat required to change a gram of substance from a liquid to a gas.
Explanation:
The heat of vaporization is the heat required to change a gram of substance from a liquid to a gas.
- It is also known as the enthalpy of vaporization.
- The heat of vaporization is the quantity of heat needed to change one gram of a substance from liquid to gas.
- This heat of vaporization is dependent on the pressure conditions the process is taking place.
- Different liquids have their heat of vaporization.
learn more:
Heat of vaporization brainly.com/question/9529654
#learnwithBrainly
Yep ur right it’s b as it is balanced