Pete because 2.5 x 2.3 is faster
In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Answer:
1 mole of platinum
Explanation:
To obtain the number of mole(s) of platinum present, we need to determine the empirical formula for the compound.
The empirical formula for the compound can be obtained as follow:
Platinum (Pt) = 117.4 g
Carbon (C) = 28.91 g
Nitrogen (N) = 33.71 g
Divide by their molar mass
Pt = 117.4 / 195 = 0.602
C = 28.91 / 12 = 2.409
N = 33.71 / 14 = 2.408
Divide by the smallest
Pt = 0.602 / 0.602 = 1
C = 2.409 / 0.602 = 4
N = 2.408 / 0.602 = 4
The empirical formula for the compound is PtC₄N₄ => Pt(CN)₄
From the formula of the compound (i.e Pt(CN)₄), we can see clearly that the compound contains 1 mole of platinum.
Answer is (3) both mass number and atomic number.
The notation is ₅₅¹³⁷Cs. The Cs represents the chemical symbol of Caesium element. The subscript number at the left hand side of the symbol indicates the atomic number. Hence, atomic number of Cs is 55. The superscript number at the left hand side of the symbol shows the mass number. Hence, the mass number of the Cs is 137.
Yes if you add an energy to an electron the electron will become excited, and it will jump to its highest level then go back down releasing energy