1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
5

Are the graphs of each pair of equations parallel, perpendicular,or neither? PLEASE I NEED YOUR HELP

Mathematics
1 answer:
Nata [24]3 years ago
7 0

Answer:

there is hint for u in the book darling

you can refer example 4 in the same book

You might be interested in
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
Prove that triangle ABC is Isosceles, given the following points.
Umnica [9.8K]

Answer:

See below

Step-by-step explanation:

<u>Given points:</u>

  • A (3, -1) , B (9, 2) , C (6, -4)

First, plot the points on the coordinate plane (see attached)

<u>We see that AB and BC look the same. Let's find their length:</u>

  • AB = \sqrt{(9-3)^2+(2-(-1))^2} = \sqrt{6^2+3^2} = \sqrt{45} = 3\sqrt{5}
  • BC = \sqrt{(6-9)^2 + (-4-2)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{45} = 3\sqrt{5}

We showed that AB = BC = 3√5, so the triangle has two sided of the same length, therefore is isosceles.

6 0
3 years ago
Please answer this question now in two minutes
Igoryamba

Answer: x=6, y=20

Step-by-step explanation:

Since ΔBCD and ΔTUS are congruent triangles, we can set the sides equal to each other.

y=2y-20                           [subtract both sides by 2y]

-y=-20                              [divide both sides by -1]

y=20

--------------------------------------------------------------------------------------

3x+32=9x-4                    [add both sides by 4, and subtract both sides by 3x]

36=6x                              [divide both sides by 6]

x=6

7 0
3 years ago
Please help me! 6y - 8x = 54
3241004551 [841]

Answer:

y = 9 + 4x/3

x = -27/4 + 3y/4

*everything that looks like x/y is a fraction, -27/4 is entirely negative

6 0
3 years ago
Read 2 more answers
Quadrilateral ABCD?<br>​
Mashutka [201]

The given quadrilateral is a kite.

Given: Point A (2, 4), B (-2, -5), C (7, -1) and D (7, 4)

Firstly, we find the distance between AD and DC

AD = \sqrt{(7 - 2)^{2} + (4 - 4)^{2}  }

⇒ AD = \sqrt{5^{2} }

⇒ AD = 5

DC = \sqrt{(7 - 7)^{2} + (4 - (-1))^{2} }

⇒ DC = \sqrt{5^{2} }

⇒ DC = 5

Hence, AD = DC = 5

Now, find the distance between AB and BC

AB = \sqrt{(-2 - 2)^{2}  + (-5 - 4)^{2} }

⇒ AB = \sqrt{(-4)^{2} + (-9)^{2}  }

⇒ AB = \sqrt{16 + 81}

⇒ AB = \sqrt{97}

BC = \sqrt{(7 - (-2))^{2} + (-1 - (-5))^{2}  }

⇒ BC = \sqrt{9^{2}  + 4^{2} }

⇒ BC = \sqrt{81 + 16}

⇒ BC = \sqrt{97}

Hence, AB = BC = √97

In the given quadrilateral, the two pair is of equal length and these sides are adjacent to each other.

Hence, it follows the property of kite.

For more questions on quadrilateral, visit:

brainly.com/question/23935806

#SPJ9

6 0
1 year ago
Other questions:
  • if you werevto draw three different parallelograms each with a base of 6 units and a height of 4 units how would the areas compa
    10·1 answer
  • What are the surface area and volume ratios of a cylinder change if the radius and height are multiplied by 5/4 ?
    13·2 answers
  • Name the base and exponent for 7:4
    9·1 answer
  • Which equation has a slope of 3 and a y intercept of 4?
    15·2 answers
  • Did I get this right? I want to make sure
    9·1 answer
  • Which statement is true regarding the value of the digit in the tenths place of the decimal 19.9993?
    10·1 answer
  • 2(x+ 6) - (4x - 35)=
    8·2 answers
  • What is the slope of the line that passes through the points (5, 2) and (3,-1)?
    11·1 answer
  • CAN SOMEONE PLEASE HELP MEEE? PLEASE ANSWER I WILL MARK BRIANLIEST PLEASEEEEEEE !!!!!!!!!!!!!!!!!
    12·2 answers
  • Simplify each expression. Use a slash () to show a fraction. Do not use any spaces.<br> -(3)^2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!