Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Answer:
meter, kilogram
Explanation:
Here we want to know how big the tiger is. This means that we want to measure its size and possibly its mass.
The size is actually a measure of the length of the tiger, and length is measured in meters.
The mass of an object, instead, is a measure of the "amount of matter" in the substance, and it is measured in kilograms.
The other options are wrong because:
- The second is the unit of time
- The candela is the unit of the luminous intensity
- The mole is the unit of the amount of substance, and it is used for gases
- The ampere is the unit of the current
the polluted urban environment affects the health and quality of life
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
Answer:
Position-Time graphs display the motion of a object by showing the changes of velocity with respect to time.
The motion of a car on a position-time graph that is represented with a horizontal line indicates that the car has stopped moving.
A straight line with a positive slope indicates that the car is moving at a constant velocity, and thus the slope is constant. On the other hand, a curve with a changing slope, shows that the velocity is changing.