Answer:
The kinetic energy of the more massive ball is greater by a factor of 2.
Explanation:
By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.
Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.
Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.
<u>Answer</u>
Part 1) Increase
Part 2) expand
Part 3) rise
<u>Explanation</u>
When the air is heated the molecules gain kinetic energy and starts to collide with walls of the ballon making it to increase it size.
Thus the volume of the balloon expands. When this happens the balloon and its content becomes less dense and it rises.
In option A there are two resistors in which two terminals of resistors are connected with the terminals of battery so here they are connected in parallel.
In option B all resistors and battery is connected in a single loop so it is a series combination of all.
In option C all three resistors are connected by their terminals to a single battery so here all three resistor are in parallel with the battery.
In option D only one resistor is connected in series with a battery as one single loop is there.
So in the above all cases two resistors are in parallel with battery in option A
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!