A parabola is a quadratic function, and a quadratic can be expressed in vertex form, which is:
y=a(x-h)^2+k, where (h,k) is the vertex (absolute maximum or minimum point of the quadratic)
In this case we are given that (h,k) is (-5,80) so we have so far:
y=a(x--5)^2+80
y=a(x+5)^2+80, we are also told that it passes through the point (0,-45) so:
-45=a(0+5)^2+80
-45=25a+80 subtract 80 from both sides
-125=25a divide both sides by 25
-5=a, so now we know the complete vertex form is:
y=-5(x+5)^2+80
The x-intercepts occur when y=0 so:
0=-5(x+5)^2+80 add 5(x+5)^2 to both sides
5(x+5)^2=80 divide both sides by 5
(x+5)^2=16 take the square root of both sides
x+5=±√16 which is
x+5=±4 subtract 5 from both sides
x=-5±4 so the x-intercepts are:
x=-1 and -9
Well 85% of 25 is 21.25. So the closest ones would be 20 or 22. Well let's check out the difference's. 21.25-20= 1.25.....22-21.25=.75. well clearly .75 is smaller than 1.25 so your answer would be 22. 85% of 25 is closest to 22.
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 