Answer:
r = {-8, -4}
Step-by-step explanation:
Simplifying
r2 = -32 + -12r
Solving
r2 = -32 + -12r
Solving for variable 'r'.
Reorder the terms:
32 + 12r + r2 = -32 + -12r + 32 + 12r
Reorder the terms:
32 + 12r + r2 = -32 + 32 + -12r + 12r
Combine like terms: -32 + 32 = 0
32 + 12r + r2 = 0 + -12r + 12r
32 + 12r + r2 = -12r + 12r
Combine like terms: -12r + 12r = 0
32 + 12r + r2 = 0
Factor a trinomial.
(8 + r)(4 + r) = 0
Subproblem 1
Set the factor '(8 + r)' equal to zero and attempt to solve:
Simplifying
8 + r = 0
Solving
8 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + r = 0 + -8
Combine like terms: 8 + -8 = 0
0 + r = 0 + -8
r = 0 + -8
Combine like terms: 0 + -8 = -8
r = -8
Simplifying
r = -8
Subproblem 2
Set the factor '(4 + r)' equal to zero and attempt to solve:
Simplifying
4 + r = 0
Solving
4 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + r = 0 + -4
Combine like terms: 4 + -4 = 0
0 + r = 0 + -4
r = 0 + -4
Combine like terms: 0 + -4 = -4
r = -4
Simplifying
r = -4
Solution
r = {-8, -4}
3,301927249 = ³√36
As discussed in one of my videos on my channel [USERNAME: MATHEMATICS WIZARD] on the Six Rational Exponential Rules, this one states that with a numerator of 1 in the exponent, you take the multiplicative inverse [reciprocal] of the fraction, and set the whole number equal to the root, bringing your a inside the radical, which is 36.
ⁿ√aᵐ = aᵐ\ⁿ → works for both: numerator ≥ 1
I am joyous to assist you anytime.
Answer:
12+98=110
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
For the given intervals
( - ∞, - 5) ← use any value < - 5 but not - 5, the parenthesis ) indicates that x is less than - 5 but not equal to - 5
(- 5, - 1) ← - 4, - 3, - 2 can be used but not - 5 or - 1
(- 1, 4) ← 0, 1, 2, 3 can be used but not - 1 or 4
(4, ∞ ) ← use any value > 4 but not 4
Hence
3 can be used in (- 1, 4)
- 6 can be used in (- ∞, - 5)
zero can be used in (- 1, 4)
- 5 cannot be used in any of the given intervals
Answer:x=12 and 68$
Step-by-step explanation: