Answer:
C
Step-by-step explanation:
You have to divide both sides by the coefficient of x
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>
Answer:
The half-life of the radioactive substance is 135.9 hours.
Step-by-step explanation:
The rate of decay is proportional to the amount of the substance present at time t
This means that the amount of the substance can be modeled by the following differential equation:

Which has the following solution:

In which Q(t) is the amount after t hours, Q(0) is the initial amount and r is the decay rate.
After 6 hours the mass had decreased by 3%.
This means that
. We use this to find r.







So

Determine the half-life of the radioactive substance.
This is t for which Q(t) = 0.5Q(0). So







The half-life of the radioactive substance is 135.9 hours.
3/5÷1/7 use the recipical
3/5 ÷ 7/1= 21/5
21÷5=4 1/5 I think is your first answer but I could be wrong
7/8 6/7
you must find common denominator.
49/56 - 48/56= 1/56 again I could be wrong
the answer for this question is x = 9