Answer:
Maximum safe height can be reached by ladder = 15.03. ft
Step-by-step explanation:
Given,
Let's assume the maximum safe height of wall = h
angle formed between ladder and ground = 70°
length of ladder = 16 ft
From the given data, it can be seen that ladder will form a right angle triangle structure with the wall
So,from the concept of trigonometry,
![Sin70^o\ =\ \dfrac{\textrm{maximum safe height of wall}}{\textrm{length of ladder}}](https://tex.z-dn.net/?f=Sin70%5Eo%5C%20%3D%5C%20%5Cdfrac%7B%5Ctextrm%7Bmaximum%20safe%20height%20of%20wall%7D%7D%7B%5Ctextrm%7Blength%20of%20ladder%7D%7D)
![=>Sin70^o\ =\ \dfrac{h}{16\ ft}](https://tex.z-dn.net/?f=%3D%3ESin70%5Eo%5C%20%3D%5C%20%5Cdfrac%7Bh%7D%7B16%5C%20ft%7D)
![=>\ h\ =\ 16\times Sin70^o](https://tex.z-dn.net/?f=%3D%3E%5C%20h%5C%20%3D%5C%2016%5Ctimes%20Sin70%5Eo)
=> h = 16 x 0.9396
=> h = 15.03 ft
So, the maximum safe height that can be reached by the ladder will be 15.03 ft.
Answer:31.4cm
Step-by-step explanation:
Circumference=2×π×(diameter/2)
Circumference=2×3.14×10/2
Circumference=(2×3.14×5)
Circumference=31.
------------------------------------------------------------------------------------------
Formula
------------------------------------------------------------------------------------------
a² + b² = c²
------------------------------------------------------------------------------------------
Find Diagonal
------------------------------------------------------------------------------------------
9² + 7² = c²
c² = 81 + 49
c² = 130
c = 11 in (Nearest whole number)
------------------------------------------------------------------------------------------
Answer: The diagonal measure 11 inches
------------------------------------------------------------------------------------------
Not as hard as you think.
Just multiply all the prime factors together.
Answer:
a. (b) 2.5
b. (b) 1.89
Step-by-step explanation:
E(X) =0(0.05)+1(0.25)+2(0.35)+3(0.15)+4(0.15)+5(0.15)= 2.5