The correct answer is: [B]: " (2, 5) ".
__________________________________________
Given:
__________________________________________
-5x + y = -5 ;
-4x + 2y = 2 .
___________________________________________
Consider the first equation:
___________________________
-5x + y = -5 ; ↔ y + (-5x) = -5 ;
↔ y - 5x = -5 ; Add "5x" to each side of the equation; to isolate "y" on one side of the equation; and to solve in terms of "y".
_____________________________________________
y - 5x + 5x = -5 + 5x
y = -5 + 5x ; ↔ y = 5x - 5 ;
____________________________________________
Now, take our second equation:
______________________________
-4x + 2y = 2 ; and plug in "(5x - 5)" for "y" ; and solve for "x" :
_____________________________________________________
-4x + 2(5x - 5) = 2 ;
______________________________________________________
Note, 2(5x - 5) = 2(5x) - 2(5) = 10x - 10 ;
__________________________________________
So: -4x + 10x - 10 = 2 ;
On the left-hand side of the equation, combine the "like terms" ;
-4x +10x = 6x ; and rewrite:
6x - 10 = 2 ;
Now, add "10" to each side of the equation:
6x - 10 + 10 = 2 + 10 ;
to get:
6x = 12 ; Now, divide EACH side of the equation by "6" ; to isolate "x" on one side of the equation; and to solve for "x" ;
6x/6 = 12 / 6 ;
x = 2 ;
_________________________________
Now, take our first given equation; and plug our solved value for "x" ; which is "2" ; and solve for "y" ;
_____________________________________
-5x + y = -5 ;
-5(2) + y = -5 ;
-10 + y = -5 ; ↔
y - 10 = -5 ;
Add "10" to each side of the equation; to isolate "y" on one side of the equation; and to solve for "y" ;
y - 10 + 10 = -5 + 10 ;
y = 5 .
_____________________________
So, we have, x = 2 ; and y = 5 .
____________________________
Now, let us check our work by plugging in "2" for "x" and "5" for "y" in BOTH the original first and second equations:
______________________________
first equation:
-5x + y = -5 ;
-5(2) + 5 =? -5?
-10 + 5 =? -5 ? YES!
______________________
second equation:
-4x + 2y = 2 ;
-4(2) + 2(5) =? 2 ?
-8 + 10 =? 2 ? Yes!
_______________________________________________________
So, the answer is:
___________________________________________________________
x = 2 , y = 5 ; or, "(2, 5)" ; which is: "Answer choice: [B] " .
___________________________________________________________
48/4= 12 pens per box
12*9 = 108 pens in 9 boxes
Question:
A solar power company is trying to correlate the total possible hours of daylight (simply the time from sunrise to sunset) on a given day to the production from solar panels on a residential unit. They created a scatter plot for one such unit over the span of five months. The scatter plot is shown below. The equation line of best fit for this bivariate data set was: y = 2.26x + 20.01
How many kilowatt hours would the model predict on a day that has 14 hours of possible daylight?
Answer:
51.65 kilowatt hours
Step-by-step explanation:
We are given the equation line of best fit for this data as:
y = 2.26x + 20.01
On a day that has 14 hours of possible daylight, the model prediction will be calculated as follow:
Let x = 14 in the equation.
Therefore,
y = 2.26x + 20.01
y = 2.26(14) + 20.01
y = 31.64 + 20.01
y = 51.65
On a day that has 14 hours of daylight, the model would predict 51.65 kilowatt hours
Answer:

your answer is not correct.
Answer:
Option C.
Step-by-step explanation:
It is given that the ball's height, in feet, is modeled by the function
where, x represents time in seconds.
We need to find the height of the ball when Sarina throws it. It means, we need to find the initial height of the ball.
Substitute x=0 in the given function, to find the initial height.
The height of the ball is 3 feet when Sarina throws it.
Therefore, the correct option is C.