Answer:

Step-by-step explanation:
Rn(x) →0
f(x) = 10/x
a = -2
Taylor series for the function <em>f </em>at the number a is:

............ equation (1)
Now we will find the function <em>f </em> and all derivatives of the function <em>f</em> at a = -2
f(x) = 10/x f(-2) = 10/-2
f'(x) = -10/x² f'(-2) = -10/(-2)²
f"(x) = -10.2/x³ f"(-2) = -10.2/(-2)³
f"'(x) = -10.2.3/x⁴ f'"(-2) = -10.2.3/(-2)⁴
f""(x) = -10.2.3.4/x⁵ f""(-2) = -10.2.3.4/(-2)⁵
∴ The Taylor series for the function <em>f</em> at a = -4 means that we substitute the value of each function into equation (1)
So, we get
Or 
Answer:
Step-by-step explanation:
You have 3 unknowns: a, b, and c. It's our job to find them algebraically. I'm going to start with the point where x = 0 and y = 7. You'll see why in a minute. Filling in the standard form of a quadratic
using (0, 7):
gives you that c = 7. We will use that value now when we write the next 2 equations. Now the point (-2, 19):
and
so
12 = 4a - 2b
Now for the next point (-1, 12):
and
so
5 = a - b
Now we have a system of equations (the 2 bold font equations) that we will solve by elimination:
12 = 4a - 2b
5 = a - b
Multiply the bottom equation by -4 to get a new system:
12 = 4a - 2b
-20 = -4a + 4b
Add those together to get rid of the a terms and end up with
-8 = 2b so
b = -4
Now we can sub in -4 for b to solve for a. I'm using the second bold type equation to do this:
5 = a - (-4) and
5 = a + 4 so
a = 1 and the equation for the quadratic function is

Your answer is going to be: 979,660
No because the sum could also be irrational number which for example it could be square root of 9 or 49
Hope this helps answer your question