1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
2 years ago
7

A rectangular field has an area of 1450 square feet. If the width is 3 times greater than the length which of the following is t

he length of each field
Mathematics
1 answer:
Mars2501 [29]2 years ago
7 0
Length would be 362.5
He width would be 1087.5

Hope this helps :)

Mark as brainliest!!
You might be interested in
Suppose that 50% of all young adults prefer McDonald's to Burger King when asked to state a preference. A group of 12 young adul
ddd [48]

Answer:

a) 0.194 = 19.4% probability that more than 7 preferred McDonald's

b) 0.787 = 78.7% probability that between 3 and 7 (inclusive) preferred McDonald's

c) 0.787 = 78.7% probability that between 3 and 7 (inclusive) preferred Burger King

Step-by-step explanation:

For each young adult, there are only two possible outcomes. Either they prefer McDonalds, or they prefer burger king. The probability of an adult prefering McDonalds is independent from other adults. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

50% of all young adults prefer McDonald's to Burger King when asked to state a preference.

This means that p = 0.5

12 young adults were randomly selected

This means that n = 12

(a) What is the probability that more than 7 preferred McDonald's?

P(X > 7) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

In which

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.121

P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.054

P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.016

P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.003

P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.000

P(X > 7) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.121 + 0.054 + 0.016 + 0.003 + 0.000 = 0.194

0.194 = 19.4% probability that more than 7 preferred McDonald's

(b) What is the probability that between 3 and 7 (inclusive) preferred McDonald's?

P(3 \leq X \leq 7) = P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.054

P(X = 4) = C_{12,4}.(0.5)^{4}.(0.5)^{8} = 0.121

P(X = 5) = C_{12,5}.(0.5)^{5}.(0.5)^{7} = 0.193

P(X = 6) = C_{12,6}.(0.5)^{6}.(0.5)^{6} = 0.226

P(X = 7) = C_{12,7}.(0.5)^{7}.(0.5)^{5} = 0.193

P(3 \leq X \leq 7) = P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.054 + 0.121 + 0.193 + 0.226 + 0.193 = 0.787

0.787 = 78.7% probability that between 3 and 7 (inclusive) preferred McDonald's

(c) What is the probability that between 3 and 7 (inclusive) preferred Burger King?

Since p = 1-p = 0.5, this is the same as b) above.

So

0.787 = 78.7% probability that between 3 and 7 (inclusive) preferred Burger King

7 0
2 years ago
How many times does 7 go into 2,400
aksik [14]

Answer:

about 324 times.

Step-by-step explanation:

2400/7

342.857142857

4 0
3 years ago
Read 2 more answers
Find percent notation.<br> 4/5
Romashka [77]

The Answer to your problem is:

0.8

8 0
3 years ago
Read 2 more answers
Can 6 fit into 36 and if so how many times
ratelena [41]
Yes.
This is the same thing as:
\frac{36}{6} =6

How many times can 6 go into 36?
6 times
Try:
6*6=36

So true.

Hope this helps! :D 
6 0
3 years ago
Read 2 more answers
Kelly runs a restaurant that sells two kinds of desserts. Kelly knows the restaurant must make at least 25 dozen and at most 45
MissTica

Answer:

  (c, m) = (45, 10)

Step-by-step explanation:

A dozen White Chocolate Blizzards generate more income and take less flour than a dozen Mint Breezes, so production of those should clearly be maximized. Making 45 dozen Blizzards does not use all the flour, so the remaining flour can be used to make Breezes.

Maximum Blizzards that can be made: 45 dz. Flour used: 45×5 oz = 225 oz.

The remaining flour is ...

  315 oz -225 oz = 90 oz

This is enough for (90 oz)/(9 oz/dz) = 10 dozen Mint Breezes. This is in the required range of 2 to 15 dozen.

Kelly should make 45 dozen White Chocolate Blizzards and 10 dozen Mint Breezes: (c, m) = (45, 10).

__

In the attached graph, we have reversed the applicable inequalities so the feasible region shows up white, instead of shaded with 5 different colors. The objective function is the green line, shown at the point that maximizes income. (c, m) ⇔ (x, y)

8 0
3 years ago
Other questions:
  • Find x, where x^6 = 9^-3 and x &gt; 0
    6·1 answer
  • A 40-foot by 10-foot rectangular garden is enclosed by a fence. To make the garden larger, while using the same amount of fencin
    7·2 answers
  • Simplify the expression 10[4x10÷(6^2-4^2)+1]<br><br> A. 210<br> B. 30<br> C. 201<br> D. 20
    15·2 answers
  • Round 90.2844097979 to 3 decimals
    10·1 answer
  • The sum of two numbers is 12 and the quotient of those numbers is -4.
    5·1 answer
  • The tape diagram represents an equation.
    7·1 answer
  • Heeeeeeeelllllpppp<br>why isnt anyone helping me :(<br>find MK​
    6·1 answer
  • Please help on the half circle one
    14·1 answer
  • Given that ƒ(x) = 3x, identify the function g(x) shown in the figure.
    6·1 answer
  • X^2+y^2=1 yes or no relation represents a function or not
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!