To solve this problem it is necessary to apply the concepts related to the Period of a body and the relationship between angular velocity and linear velocity.
The angular velocity as a function of the period is described as

Where,
Angular velocity
T = Period
At the same time the relationship between Angular velocity and linear velocity is described by the equation.

Where,
r = Radius
Our values are given as,


We also know that the radius of the earth (r) is approximately

Usando la ecuación de la velocidad angular entonces tenemos que



Then the linear velocity would be,

x

The speed would Earth's inhabitants who live at the equator go flying off Earth's surface is 463.96
The answer is C, since the velocity is not changing then neither is the acceleration
CORRECT ANSWER:
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
STEP-BY-STEP EXPLANATION:
The complete question from book is
According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.
c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.
d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.
e- None of the other answer options is correct.
<h2>The work done = - 2 x 10⁴ J</h2>
Explanation:
In the first case , the volume is kept constant and pressure varies .
In isothermal process , the work done
W₁ = V x ΔP
here V is the volume of gas and ΔP is the change in pressure
Thus W₁ = 0
Because there is no change in volume , therefore displacement is zero .
In second case pressure is constant , but volume changes
Thus W₂ = P x ΔV
here P is the pressure and ΔV is the change in volume
Therefore W₂ = 4 x 10⁵ x 5 x 10⁻² = 2 x 10⁴ J
The total work done W = - 2 x 10⁴ J
Because the work done in compression is negative .