3x + 1 ≤ 1
Subtract 1 from each side: 3x ≤ 0
Divide each side by 3 : <em>x ≤ 0</em>
Answer:
T=7.4 N hence T<30 N
Explanation:
The figure is likely to be similar to the one attached. Writing the equation for forces we have
F-T=Fa/g where F is the force, T is tension, a is acceleration and g is acceleration due to gravity. Substituting the figures we have the first equation as
30 N - T = (30/9.81)a
Also, we know that T=F*a/g and substituting 10N for F we obtain the second equation as
T = (10/9.81)a
Adding the first and second equations we obtain
30 = 4.077471967
a Hence

and T=a hence
T is approximately 7.4 N
Answer:
a) 
b) the motorcycle travels 155 m
Explanation:
Let
, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

where:
is the speed of the motorcycle at time 2
is the velocity of the car (constant)
is the velocity of the car and the motorcycle at time 1
d is the distance between the car and the motorcycle at time 1
x is the distance traveled by the car between time 1 and time 2
Solving the system of equations:
![\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcar%26motorcycle%5C%5Cx%3Dv_0%5CDelta%7Bt%7D%26x%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%7D%29%20%5CDelta%7Bt%7D%5Cend%7Barray%7D%5Cright%5D)

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

True or false: while riding a bicycle up a gentle hill, it fairly easy to increase your potential energy, but to increase your kinetic energy would ...
Answer:
A. 
B. t = 50 s
Explanation:
A. The vectorial equation of the person who is getting closer to the other person is:

r: position vector
v: speed vector = 6m/s i (if you consider the motion as a horizontal motion)
Then, you replace and obtain:

B. The time is:

d: distance to the observer = 300m
v: speed of the person on the car = 6.00 m/s
