Resistance = (voltage) / (current)
Resistance = (12v) / (0.33 A)
Resistance = (12/0.33) ohms
<em>Resistance = 36.4 ohms</em>
The net force required to accelerate a car is 6000 N.
Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.
The formula used to calculate the net force is :
F = ma
where, F = Force
m = mass = 2000 kg
a = acceleration = 3.00 m/s^2
∴ F = 2000*3
F = 6000 N
Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.
To learn more about force,
brainly.com/question/1046166
Answer:
B
Explanation:
kinetic energy (KE) is the energy possessed by moving bodies. It can be expressed as:
KE =
m
Where: m is the mass of the object, and v its speed.
For example, a stone of mass 2kg was thrown and moves with a speed of 3 m/s. Determine the kinetic energy of the stone.
Thus,
KE =
x 2 x 
= 9
KE = 9.0 Joules
Assume that the speed of the stone was 4 m/s, then its KE would be:
KE =
x 2 x 
= 16
KE = 16.0 Joules
Therefore, it can be observed that as speed increases, the kinetic energy increases. Thus option B is appropriate.
A region within a magnetic material in which magnetization is in a uniform direction this means the individual magnetic moments of the atoms are aligned with one another and they point the same direction. when cooled bwlow a temperature called the curie temperature the magnetization of a piece of ferromagnetic material.<span />
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>