Answer:
The tension of the string is 41.876 N
Explanation:
Given;
length of the string, L = 2.11 m
mass of the string, m = 19.5 g = 0.0195 kg
frequency of the wave, f = 440 Hz
wavelength, λ = 15.3 cm = 0.153 m
The velocity of the wave is given by;
v = fλ
v = 440 x 0.153
v = 67.32 m/s
Also the velocity of the wave is given by

where;
μ is mass per unit length = 0.0195 / 2.11 = 0.00924 kg/m
T is the tension of the string
T = v²μ
T = (67.32)²(0.00924)
T = 41.876 N
Therefore, the tension of the string is 41.876 N
If the two cups are the same/equal in all regards the spoon makes the difference in heat loss. Metal spoon is a good conductor, heat conducts up the spoon handle. Radiant and convection losses occur in the surrounding air. Metal becomes a “heat sink”.
Spoon will feel warmer to the touch than a pottery or foam cup that is not a good conductor.
Answer:
The coordinates of the point is (0,0.55).
Explanation:
Given that,
First charge
at origin
Second charge
Second charge at point P = (0,1)
We assume that,
The net electric field between the charges is zero at mid point.
Using formula of electric field







Hence, The coordinates of the point is (0,0.55).
At Z ... slowest speed
At Y ... fastest speed
At X ... medium speed
Wherever it is in its orbit, the line from the planet to the Sun smears over the same amount of area every second.
That's Kepler's second law of planetary motion.
The reason this happens is: That's how gravity works. (A better explanation is available, but first you have to be able to twirl calculus and solid geometry in the air on long sticks.)