I think its 1.012(500 - 100) = 400* 1.012 = 404.80 dollars
Answer:
N'(x)=90 In(43)*43^x-90 In(50)*43^x /50^x
Step-by-step explanation:
The applications that will involve percentages include:
- Sales Tax
- Original Sale Price
- Commission
- Income Tax
<h3>Which applications involve percentages?</h3>
Sales tax will involve percentage because the sales tax percentage will be needed to calculate the sales tax. The same goes for the income tax.
Commissions also involve percentages as the commission is a percentage of sales. The original sales price can only be acquired by using the discount or markup percentage applied to it to get the current sales price.
Find out examples of commission percentages at brainly.com/question/24951536.
Answer: 1) 0.6561 2) 0.0037
Step-by-step explanation:
We use Binomial distribution here , where the probability of getting x success in n trials is given by :-

, where p =Probability of getting success in each trial.
As per given , we have
The probability that any satellite dish owners subscribe to at least one premium movie channel. : p=0.10
Sample size : n= 4
Let x denotes the number of dish owners in the sample subscribes to at least one premium movie channel.
1) The probability that none of the dish owners in the sample subscribes to at least one premium movie channel = 

∴ The probability that none of the dish owners in the sample subscribes to at least one premium movie channel is 0.6561.
2) The probability that more than two dish owners in the sample subscribe to at least one premium movie channel.
= ![P(X>2)=1-P(X\leq2)\\\\=1-[P(X=0)+P(X=1)+P(X=2)]\\\\= 1-[0.6561+^4C_1(0.10)^1(0.90)^{3}+^4C_2(0.10)^2(0.90)^{2}]\\\\=1-[0.6561+(4)(0.0729)+\dfrac{4!}{2!2!}(0.0081)]\\\\=1-[0.6561+0.2916+0.0486]\\\\=1-0.9963=0.0037](https://tex.z-dn.net/?f=P%28X%3E2%29%3D1-P%28X%5Cleq2%29%5C%5C%5C%5C%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D%5C%5C%5C%5C%3D%201-%5B0.6561%2B%5E4C_1%280.10%29%5E1%280.90%29%5E%7B3%7D%2B%5E4C_2%280.10%29%5E2%280.90%29%5E%7B2%7D%5D%5C%5C%5C%5C%3D1-%5B0.6561%2B%284%29%280.0729%29%2B%5Cdfrac%7B4%21%7D%7B2%212%21%7D%280.0081%29%5D%5C%5C%5C%5C%3D1-%5B0.6561%2B0.2916%2B0.0486%5D%5C%5C%5C%5C%3D1-0.9963%3D0.0037)
∴ The probability that more than two dish owners in the sample subscribe to at least one premium movie channel is 0.0037.
<span>D. p = fraction H over the quantity 3 times w + a</span>