Answer:
C_{y} = 4.96 and θ' = 104,5º
Explanation:
To add several vectors we can decompose each one of them, perform the sum on each axis, to find the components of the resultant and then find the module and direction.
Let's start by decomposing the two vectors.
Vector A
sin θ =
/ A
cos θ = Aₓ / A
A_{y} = A sin θ
Ax = A cos θ
A_{y} = 4.9 sin 31 = 2.52
Ax = 4.9 cos 31 = 4.20
Vector B
B_{y} = B sin θ
Bx = B cos θ
B_{y} = 6 sin 156 = 2.44
Bx = 6 cos 156 = -5.48
The components of the resulting vector are
X axis
Cx = Ax + B x
Cx = 4.20 -5.48
Cx = -1.28
Axis y
C_{y} = Ay + By
C_{y} = 2.52 + 2.44
C_{y} = 4.96
Let's use the Pythagorean theorem to find modulo
C = √ (Cₙ²x2 + Cy2)
C = Ra (1.28 2 + 4.96 2)
C = 5.12
We use trigonemetry to find the angle
tan θ = C_{y} / Cₓ
θ’ = tan⁻¹ (4.96 / (1.28))
θ’ = 75.5
como el valor de Cy es positivo y Cx es negativo el angulo este en el segundo cuadrante, por lo cual el angulo medido respecto de eje x positivo es
θ’ = 180 – tes
θ‘= 180 – 75,5
θ' = 104,5º
Answer:
Force of static friction between the two surfaces
Explanation:
When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.
This force is given by the relation

Where,
μ - coefficient of static friction
η - normal force acting on the body
When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.
So, in order to move the body, the applied force should be greater than the force of static friction.
Answer:
0.057 joules is needed to create the total rotational energy each second.
Explanation:
The energy rate is the ratio of total energy to time, which coincides with the definition of power at constant rate:




0.057 joules is needed to create the total rotational energy each second.
I believe it wattage or watts
D= vt +.5at^2
since he started at rest, v (initial velocity) is 0
so d=.5at^2
d = .5 (6m/s^2) (4.1s)^2
then put that into a calculator.