Answer:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Step-by-step explanation:
The question is poorly formatted.
Given
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Required
Derive an equivalent expression
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Express 18 as 9 * 2
![\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%20%2A%202y%7D)
Split the expression as follows:
![\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%7D%20%2A%20%5Csqrt%7B2y%7D)
Take positive square root of 9
![\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%2A3%20%2A%20%5Csqrt%7B2y%7D)
![\sqrt[3]{2y^3} * 21 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%2021%20%2A%20%5Csqrt%7B2y%7D)
![21*\sqrt[3]{2y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
The cube root can be rewritten to give:
![21*\sqrt[3]{2}*\sqrt[3]{y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%2A%5Csqrt%5B3%5D%7By%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
![\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E3%7D%20%3D%20y%5E%7B3%2A%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%20y)
So, we have:
![21*\sqrt[3]{2} * y * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%20%2A%20y%20%2A%20%20%5Csqrt%7B2y%7D)
Rewrite as:
![21y *\sqrt[3]{2} * \sqrt{2y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2y%7D)
Split 
![21y *\sqrt[3]{2} * \sqrt{2} * \sqrt{y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D%20%2A%20%5Csqrt%7By%7D)
Collect Like Terms
![21y*\sqrt{y} *\sqrt[3]{2} * \sqrt{2}](https://tex.z-dn.net/?f=21y%2A%5Csqrt%7By%7D%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D)
Represent in index form

Apply law of indices




Hence:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
T + S + R = 180
R = 180 - (T + S)
T + S = 68 + 76 = 144
So R = 180 - 144 = 36
<R = 36
Let's work out the process to find the numerator:
(x+2)/2 - (x+1)/3x Factor using the LCD, 6x
3x(x+2)/6x - 2(x+1)/6x
(3x² + 6x - 2x - 2)/6x
= (3x² + 4x - 2)/6x
Answer is 3x² + 4x - 2
Hopefully I did this correct, Not to good with math c':
Answer:
8
Angle 1= RQS and STU
Angle 2= RSQ and TSU
Similar due to Angle Angle
9
15:24
15x=7
24x= 7/15*14= 11.2
10.
10:2
15=10x
2x=3
11.
20:8
8x=10
x=5/4
15-4-5=5/4.
The A.) MURRAY RIVER is the only Australian river to flow year-round.
It is the longest river in Australia. Its length is 2,508 kilometer or 1,558 miles.
It borders the states of Australia; namely, New South Wales,Victoria, and South Australia.