Answer:
Methanol would be used as a reagent in excess, since it is a very low-cost solvent. For product isolation, the first thing to do is remove the methanol through a distillation process. The residue produced can be dissolved in diethyl ether. Using a NaHCO₃ solution, extraction is performed. When it separates into two phases, the product will be in the ether and the reagent in the aqueous phase. The ether can also be removed by distillation, and at the end of this process you will have the product you want.
Explanation:
Answer:
moles of carbon dioxide produced are 410.9 mol.
Explanation:
Given data:
Mass of C₆H₁₄O₂ = 16.5 g
Moles of O₂ = 499 mol
Moles of CO₂ = ?
First of all we will write the balance chemical equation.
2C₆H₁₄O₂ + 17O₂ → 14CO₂ + 12H₂O
moles of C₆H₁₄O₂ = mass × molar mass
moles of C₆H₁₄O₂ = 16.5 g × 118 g/mol
moles of C₆H₁₄O₂ = 1947 mol
Now we compare the moles of CO₂ with moles of O₂ and C₆H₁₄O₂ from balance chemical equation.
O₂ : CO₂
17 : 14
499 : 14/17× 499 = 410.9 moles
C₆H₁₄O₂ : CO₂
2 : 14
1947 : 14/2× 1947 = 13629 moles
Oxygen will be limiting reactant so moles of carbon dioxide produced are 410.9 mol.
Answer:
11.74
Explanation:
The formula to find the pH of a solution is..
pH = -log [H⁺]
pH = -log [1.8×10¹²]
pH = 11.74
The answer would be to 2 decimal places because the concentration is two significant digits.