Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
Precipitation :)
Hope it helps
That would be gold, which originally in Latin was aurum, which has the chemical symbol Au. Hope this helps!
Answer:
2100 kPa
Explanation:
The temperature is constant, so the only variables are pressure and volume.
We can use Boyle’s Law.
p₁V₁ = p₂V₂ Divide both sides of the equation by V₂
p₂ = p₁ × V₁/V₂
p₁ = 485 kPa; V₁ = 648 mL
p₂ = ?; V₂ = 0.15 L = 150 mL Calculate p₂
p₂ = 485 × 648/150
p₂ = 2100 kPa
Answer:
the one that has more power to it