1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
3 years ago
11

Free coins 4+4 5+5 10x10 40+40 answer these for branliest

Mathematics
2 answers:
telo118 [61]3 years ago
4 0

Answer:

8

10

100

80

Step-by-step explanation:

4 + 4 = 8

5 + 5 = 10

10 x 10 = 100

40 + 40 = 80

Sergio [31]3 years ago
3 0
44, 55, 1010 and 4040
I knew I was smart :)
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Find the zero of the function /(x) = 5x-3.
Bad White [126]

Answer:

3/5

Step-by-step explanation:

Set it equal to 0

5x-3=0

Then solve for x

5x=3

x=3/5

Check

5(3/5) - 3

3-3

0

4 0
3 years ago
Jones Elementary is having a car wash to raise money for a community horse trail. Each car wash ticket costs $8.Tiara says the s
Debora [2.8K]
The answer is true because 8 times 125 (8x125) is equal to 1000 therefore Tiara is correct
7 0
3 years ago
Stephanie wants to buy s tomato plants.
max2010maxim [7]

Answer:

Required Expression : 7·(s + d) - 25

Step-by-step explanation :

Cost of each plant both buys = $7

No. of plants Stephanie wants to buy = s

Total cost of plants bought by Stephanie = 7·s

No. of plants Diego wants to buy = d

Total cost of plants bought by Diego = 7·d

Total cost = 7·s + 7·d

                 = 7·(s + d)

Discount applied through coupon = $25

So, Total cost of all their plants with discount = 7·(s + d) - 25

4 0
3 years ago
How do I fine the sun and difference of number 16?
Julli [10]
Difference=subtract sum=add. just answering so you don't waste points :-)
6 0
4 years ago
Other questions:
  • Prof Liu gave the same quiz to the students in her morning class and in her afternoon class. the average score for the two class
    14·1 answer
  • 15 decreased by twice a number
    14·2 answers
  • You drive for 30 min at 100 km/h and then stop for 15 min. you then drive for 45 min and 80 km/h. you average speed for the enti
    10·1 answer
  • Which ordered pairs are a solution to the equation y=x-3? (choose all that apply.) bracket(9, -18) bracket(2, -1) bracket(9, 6)
    7·1 answer
  • Which of these formulas models this arithmetic sequence? 4, 15, 26, 37, 48, . . .
    12·2 answers
  • Given the following linear function sketch the graph of the function and find the domain and range.
    13·1 answer
  • Please help i will mark brainliest! for correct answers!​
    15·1 answer
  • Tyler also wants to leave a tip for the server. How much do you think he should pay in all? Explain your reasoning.
    9·1 answer
  • Stem question, can you plz tell me 3 types of natural water vapor other that steam, fog, and clouds, thanks.
    11·1 answer
  • 14 divided by 3/8 (Lol im d//mb, i just need an answer)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!