1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
3 years ago
12

Given the function f defined by the formula f(x)=x^2-4 find the following: (a) f(3) (b) f(-4) (c) f(0) (d) (-2)

Mathematics
2 answers:
Savatey [412]3 years ago
4 0

x yerine parantez içindek,ileri yaz çıkar cevap

lianna [129]3 years ago
4 0

f(x) = x² - 4

f(3) = 3² - 4 = 5

f(-4) = (-4)² - 4 = 12

f(0) = (0)² - 4 = -4

f(-2) = (-2)² - 4 = 0

You might be interested in
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Someone plz help me please
Liula [17]

Answer:

c and d

Step-by-step explanation:

3 0
3 years ago
If f(x)=3[x-2],what is f(5.9)?<br> 9 <br> 10<br> 11<br> 12
inna [77]
<span>f(x)=3[x-2]
So, f(5.9) = ?
f(5.9) = 3(5.9 - 2)
=3(3.9)
=11.7 = 12
Thus, the answer is 12.

</span>
8 0
3 years ago
Read 2 more answers
How would I find the surface area of the cone in terms of pi? It has a radius of 7 cm and a slant height of 19 cm.
julsineya [31]
The formula is SA = \pi r^{2} + \pi rl.  r is the radius and l is the slant height.  In your case it would be 49\pi + 133\pi = 172\pi.
6 0
3 years ago
Read 2 more answers
Or a population, N = 10,000, μ = 121, and σ = 21. Find to 2 decimal places the z value for
Ugo [173]

Answer:

The z value is - 2.88

Step-by-step explanation:

The formula of the z-score of a population is z = (x¯ - μ)/(σ/\sqrt{n})

The given in the problem is:

  • μ = 121
  • σ = 21
  • x¯ = 112.35
  • n = 49

Let us substitute all of these values in the rule above

z=\frac{112.35-121}{\frac{21}{\sqrt{49}}}

Simplify up and down

z=\frac{-8.65}{\frac{21}{7}}

z=\frac{-8.65}{3}

z = - 2.883333

Round it to 2 decimal places

∴ z = - 2.88

The z value is - 2.88

7 0
4 years ago
Other questions:
  • A Mallard duck flies 5/6 of a mile in 1/60 of a hour. Compute the unit rate by setting up a complex fraction and simplifying. A)
    13·2 answers
  • I need help plz༼ つ ◕_◕ ༽つ
    6·1 answer
  • Find the surface area of a rectangular prism with length 18 inches, width 6 inches, and height 4 inches.
    10·1 answer
  • Solve for d.
    14·2 answers
  • a storage space has 45600 total square feet 38799 square feet or used how much square footage is left
    6·1 answer
  • You purchased paint for the rooms in your house. You have 1.5 cans of paint left. You painted 4 rooms and each room required 2 c
    14·2 answers
  • dao has 2 3/8 pounds of hamberger meat je is making 1/4 pound hamburgers does dao have enough meat to make 10 hamburgers explain
    14·1 answer
  • I need help with this math question
    10·1 answer
  • Help need plzzzzzzzzz​
    10·1 answer
  • Evaluate the algebraic expression when b = 3, d = 12, h = 2 and r = 7.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!