Answer:
The total mechanical energy of a pendulum is conserved neglecting the friction.
Explanation:
- When a simple pendulum swings back and forth, it has some energy associated with its motion.
- The total energy of a simple pendulum in harmonic motion at any instant of time is equal to the sum of the potential and kinetic energy.
- The potential energy of the simple pendulum is given by P.E = mgh
- The kinetic energy of the simple pendulum is given by, K.E = 1/2mv²
- When the pendulum swings to one end, its velocity equals zero temporarily where the potential energy becomes maximum.
- When the pendulum reaches the vertical line, its velocity and kinetic energy become maximum.
- Hence, the total mechanical energy of a pendulum as it swings back and forth is conserved neglecting the resistance.
Answer:
for example, a person weighing 100kg when on the moon only has 38kg is not wrong because the scale is just a device to measure weight, not mass, people have taken advantage of gravity to measure the weight of objects, so I think Your actual weight doesn't change, what changes is gravity and acceleration
Explanation:
The tension in each of the ropes is 625 N.
Draw a free body diagram for the bag of food as shown in the attached diagram. Since the bag hangs from the midpoint of the rope, the rope makes equal angles θ with the horizontal. The tensions <em>T</em> in both the ropes are also equal.
Resolve the tension T in the ropes into horizontal and vertical components T cosθ and T sinθ respectively, as shown in the figure. At equilibrium,
......(1)
Calculate the value of sinθ using the right angled triangles from the diagram.

Substitute the value of sinθ in equation (1) and simplify to obtain T.

Thus the tension in the rope is 625 N.
Answer:
these material would have very high boiling points
Scientists use models of volcanoes to , Determine their intensity.
So the answer is B.
Hope this helps!