3, protons are positive and there are 3 positive atoms visible
The distance d₁ it rises from rest while the engine is burning is given by
d₁ = d₀ + v₀t + (1/2)at²
d₁ = 0 + 0 + (1/2)·(29.4 m/s²)·(3.98 s)² = 232.85 m
So it gets to 232.85 m and then runs out of fuel. Its velocity v₁ at this point is given by
v₁ = v₀ + at = (29.4 m/s²)·(3.98 s) = 117 m/s
At this point, gravity begins to slow it down until it reaches its peak where its velocity v₂ is zero.
v₂² = v₁² + 2ad₂
where d₂ is the distance it rises until v=0
Since gravity is decelerating the rocket, a = -g, and we have
0² = (117 m/s)² + 2(-9.8 m/s²)d₂
0 = (117)² - (19.6)·d₂
0 = 13,689 - (19.6)·d₂
d₂ = 13,689/19.6 = 698.42 m
So the total height it rises is given by
d₁ + d₂ = 232.85 m + 698.42 m
= 931.27 m
Answer:
X Component is 183.85N
Explanation:
The x component of the force on the block due to the rope;
X = F cos @ where if is the force, @ is the angle mad with the block.
X = F cos @
X = 240 cos 40
Cos 40= 0.7660, so
X = 240 × 0.7660
X component= 183.85N// rounded to two decimal places.
It is important to properly balance a centrifuge because an unbalanced machine can damage the rotor, cause catastrophic damage to the machine itself, or even injure or kill lab personnel working in the room. Balancing a centrifuge involves spreading the weight of the samples across the entire rotor.