Answer:
(a) -202 m/s²
(b) 198 m
Explanation:
Given data
- Initial speed (v₀): 283 m/s

- Final speed (vf): 0 (rest)
(a) The acceleration (a) is the change in the speed over the time elapsed.
a = (vf - v₀)/t = (0 - 283 m/s)/ 1.40s = -202 m/s²
(b) We can find the distance traveled (d) using the following kinematic expression.
y = v₀ × t + 1/2 × a × t²
y = 283 m/s × 1.40 s + 1/2 × (-202 m/s²) × (1.40 s)²
y = 198 m
Answer:

Explanation:
A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.
is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to
and
at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of
.
Let the electric field intensity due to
be +
and that due to
be -
since the charge is negative. Hence at the origin;

From equation (1) above, we obtain the following;

From Coulomb's law the following relationship holds;

where
is the distance of
from the origin,
is the distance of
from the origin and k is the electrostatic constant.
It therefore means that from equation (2) we can write the following;

k can cancel out from both side of equation (3), so that we finally obtain the following;

Given;

Substituting these values into equation (4); we obtain the following;


Answer:

Explanation:
From conservation of energy states that

We can find the force by using the following formula;
N = ma + mg
Fa = ma = 76 x 1.2 = 91.2
Fg = mg = 76 x 9.8 = 744.8
N = 91.2 + 744.8 = 836
So, the force is 836 N.
let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab