You add the like terms. In this case, the like terms are -6w,+7w & 5,-4.
-6w + 7w = 1w.
5 - 4 = -1.
The coefficients (terms with variables - letters) comes firm, then the terms (numbers)
.
so the final answer is: 1w -1 :)
<span>If f(x) = 2x + 3 and g(x) = (x - 3)/2,
what is the value of f[g(-5)]?
f[g(-5)] means substitute -5 for x in the right side of g(x),
simplify, then substitute what you get for x in the right
side of f(x), then simplify.
It's a "double substitution".
To find f[g(-5)], work it from the inside out.
In f[g(-5)], do only the inside part first.
In this case the inside part if the red part g(-5)
g(-5) means to substitute -5 for x in
g(x) = (x - 3)/2
So we take out the x's and we have
g( ) = ( - 3)/2
Now we put -5's where we took out the x's, and we now
have
g(-5) = (-5 - 3)/2
Then we simplify:
g(-5) = (-8)/2
g(-5) = -4
Now we have the g(-5)]
f[g(-5)]
means to substitute g(-5) for x in
f[x] = 2x + 3
So we take out the x's and we have
f[ ] = 2[ ] + 3
Now we put g(-5)'s where we took out the x's, and we
now have
f[g(-5)] = 2[g(-5)] + 3
But we have now found that g(-5) = -4, we can put
that in place of the g(-5)'s and we get
f[g(-5)] = f[-4]
But then
f(-4) means to substitute -4 for x in
f(x) = 2x + 3
so
f(-4) = 2(-4) + 3
then we simplify
f(-4) = -8 + 3
f(-4) = -5
So
f[g(-5)] = f(-4) = -5</span>
Answer: 71 ft
i hope its the right answeer, do well
Answer:
It will be 120°
It because if you matched those two points you will have two angles of 90° degree inside that square and in the triangle at the above 120-90= 30 degrees for both angles and since that all angles of the triangle are equal 180 then 180-(30+30)=120°.
Sorry if my explanation isn't that good.
<span>An equation is a statement of equality „=‟ between two expression for particular</span>values of the variable. For example5x + 6 = 2, x is the variable (unknown)The equations can be divided into the following two kinds:Conditional Equation:<span>It is an equation in which two algebraic expressions are equal for particular</span>value/s of the variable e.g.,<span>a) 2x <span>= <span>3 <span>is <span>true <span>only <span>for <span>x <span>= 3/2</span></span></span></span></span></span></span></span></span><span> b) x</span>2 + x – <span> 6 = 0 is true only for x = 2, -3</span> Note: for simplicity a conditional equation is called an equation.Identity:<span>It is an equation which holds good for all value of the variable e.g;</span><span>a) (a <span>+ <span>b) x</span></span></span><span>ax + bx is an identity and its two sides are equal for all values of x.</span><span> b) (x + 3) (x + 4)</span> x2<span> + 7x + 12 is also an identity which is true for all values of x.</span>For convenience, the symbol „=‟ shall be used both for equation and identity. <span>1.2 Degree <span>of <span>an Equation:</span></span></span>The degree of an equation is the highest sum of powers of the variables in one of theterm of the equation. For example<span>2x <span>+ <span>5 <span>= <span>0 1</span></span></span></span></span>st degree equation in single variable<span>3x <span>+ <span>7y <span>= <span>8 1</span></span></span></span></span>st degree equation in two variables2x2 – <span> <span>7x <span>+ <span>8 <span>= <span>0 2</span></span></span></span></span></span>nd degree equation in single variable2xy – <span> <span>7x <span>+ <span>3y <span>= <span>2 2</span></span></span></span></span></span>nd degree equation in two variablesx3 – 2x2<span> + <span>7x + <span>4 = <span>0 3</span></span></span></span>rd degree equation in single variablex2<span>y <span>+ <span>xy <span>+ <span>x <span>= <span>2 3</span></span></span></span></span></span></span>rd degree equation in two variables<span>1.3 Polynomial <span>Equation <span>of <span>Degree n:</span></span></span></span>An equation of the formanxn + an-1xn-1 + ---------------- + a3x3 + a2x2 + a1x + a0<span> = 0--------------(1)</span>Where n is a non-negative integer and an<span>, a</span>n-1, -------------, a3<span>, a</span>2<span>, a</span>1<span>, a</span>0 are realconstants, is called polynomial equation of degree n. Note that the degree of theequation in the single variable is the highest power of x which appear in the equation.Thus3x4 + 2x3 + 7 = 0x4 + x3 + x2<span> <span>+ <span>x <span>+ <span>1 <span>= <span>0 , x</span></span></span></span></span></span></span>4 = 0<span>are <span>all <span>fourth-degree polynomial equations.</span></span></span>By the techniques of higher mathematics, it may be shown that nth degree equation ofthe form (1) has exactly n solutions (roots). These roots may be real, complex or amixture of both. Further it may be shown that if such an equation has complex roots,they occur in pairs of conjugates complex numbers. In other words it cannot have anodd number of complex roots.<span>A number <span>of the <span>roots may <span>be equal. Thus <span>all four <span>roots of x</span></span></span></span></span></span>4 = 0<span>are <span>equal <span>which <span>are <span>zero, <span>and <span>the <span>four <span>roots <span>of x</span></span></span></span></span></span></span></span></span></span>4 – 2x2 + 1 = 0<span>Comprise two pairs of equal roots (1, 1, -1, -1)</span>