1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
e-lub [12.9K]
3 years ago
10

The square root of 130 falls between _____ and _____ but it's closest to _____

Mathematics
2 answers:
Bond [772]3 years ago
7 0

Answer:

11 and 12 but is closest to 11

Step-by-step explanation:

goowd idk y im even answering this

geniusboy [140]3 years ago
7 0

Answer:

11 and 12, closest to 11

Step-by-step explanation:

The square root of 130 falls between 11 and 12

Since 11 squared is 121 and 12 squared is 144.

130 is closer to 121, making it closer to 11 than to 12.

Hope this helps :)

You might be interested in
Convert 50 feet per second to miles per hour. 5280 ft = 1 mi Round to the nearest hundredth.
alexandr1967 [171]
Sent a picture of the solution to the problem (s).

4 0
3 years ago
Which expression is equivalent to sec²x - 1? A. cot²x B. tan²x C. CsC²x D. cos²x​
Andrei [34K]

Hi

Answer:

Step-by-step explanation:

3 0
1 year ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
3 years ago
Step 1: 4r +5 = 7
zhannawk [14.2K]

Answer:

1- r=.5

2- x=.5

Step-by-step explanation:

sorry my handwriting is bad

4 0
3 years ago
10. Dan picks 18 baskets of apples
Paladinen [302]

Answer:

1 basket = 24 apples

24 × 18 = 432 apples

(use cross multiplication method)

1 apple = 15 cents

432 = x

\frac{1x}{1}  = 6.480

x = 6.480 cents

7 0
2 years ago
Other questions:
  • How do you solve this???? Need help ASAP!!
    15·2 answers
  • The probability of an operator entering alphanumeric data incorrectly into a field in a database is equally likely. The random v
    12·1 answer
  • 16) The manager of a bulk foods establishment sells a trail mix for $8 per
    15·1 answer
  • -2 1/4 - ( - 3/4) =<br>​
    8·2 answers
  • 11 Which expression is equivalent to x2 - 17x - 60?
    11·2 answers
  • 4m-2+3m+5 terms, like terms, coefficient, and constant
    11·1 answer
  • . The table lists the number of students from Windy Brook Middle School at the state fair. What is the ratio of sixth graders to
    14·1 answer
  • Can you find the sum of this triangle?<br>please ​
    9·1 answer
  • Easy way to do decimal multiplication.
    5·1 answer
  • Triangle XYZ, with vertices X(-2, 0), Y(-2, -1), and Z(-5, -2), undergoes a transformation to form triangle X′Y′Z′, with vertice
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!