The answer is C since heterotroph means they don't have a way of making food
A. The data did not support the hypothesis because more people preferred tap water.
Answer:
This is an incomplete question.
Below should be the complete one with options:
A researcher introduces a signal produced by bacteria to eukaryotic cells that she is culturing in the laboratory. Remarkably, she notices that this signal results in an increase in eukaryotic gene expression. How is this possible?
A.This gene expression is likely independent of the presence of the prokaryotic signal.
B.The signal is either similar in structure to a ligand used by eukaryotes, or this signaling pathway is utilized by both prokaryotes and eukaryotes.
C.This signaling pathway might actually be utilized by both prokaryotes and eukaryotes.
D.This signal is likely similar in structure to ligands utilized by eukaryotic cells.
E.This prokaryotic signal likely travels directly into eukaryotic cells and acts as a transcription factor.
THE CORRECT ANSWER IS B
B.The signal is either similar in structure to a ligand used by eukaryotes, or this signaling pathway is utilized by both prokaryotes and eukaryotes.
A neuromuscular junction (or myoneural junction) is a chemical synapse formed by the contact between a motor neuron and a muscle fiber.[1] It is at the neuromuscular junction that a motor neuron is able to transmit a signal to the muscle fiber, causing muscle contraction.
Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy. Synaptic transmission at the neuromuscular junction begins when an action potential reaches the presynaptic terminal of a motor neuron, which activates voltage-dependent calcium channels to allow calcium ions to enter the neuron. Calcium ions bind to sensor proteins (synaptotagmin) on synaptic vesicles, triggering vesicle fusion with the cell membrane and subsequent neurotransmitter release from the motor neuron into the synaptic cleft. In vertebrates, motor neurons release acetylcholine (ACh), a small molecule neurotransmitter, which diffuses across the synaptic cleft and binds to nicotinic acetylcholine receptors (nAChRs) on the cell membrane of the muscle fiber, also known as the sarcolemma. nAChRs are ionotropic receptors, meaning they serve as ligand-gated ion channels. The binding of ACh to the receptor can depolarize the muscle fiber, causing a cascade that eventually results in muscle contraction.
Neuromuscular junction diseases can be of genetic and autoimmune origin. Genetic disorders, such as Duchenne muscular dystrophy, can arise from mutated structural proteins that comprise the neuromuscular junction, whereas autoimmune diseases, such as myasthenia gravis, occur when antibodies are produced against nicotinic acetylcholine receptors on the sarcolemma.