Step-by-step explanation:

First, let's move the
to the right-hand side so we can determine what constant we'll need on the left-hand side to complete the square:

From here, since the coefficient of the
term is
, we know the square will be
(since
it's half of
).
To complete this square, we will need to add
to both sides of the equation:



Now we can take the square root of both sides to figure out the solutions to
:


Where an, an-1,a2, a1, a0 are constants. We call the term containing the highest power of x the leading term, and we call an the leading coefficient. The degree of the polynomial is the power of x in the leading term. We have already seen degree 0, 1, and 2 polynomials which were the constant, linear, and quadratic functions, respectively. Degree 3, 4, and 5
20+64=84 40+44=84 74+10=84 30+54=84
(f/g)(x) = (x^2-25)/(x-5) = x+5. So domain will be R, all real numbers