1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
12

What is the equation of the line that is perpendicular to y = -2/3x+4 and that passes through (-2,-2)

Mathematics
1 answer:
vladimir1956 [14]3 years ago
3 0

Answer:

y = 3/2x + 1

Step-by-step explanation:

y = 3/2x + b

-2 = 3/2(-2) + b

-2 = -3 + b

1 = b

You might be interested in
0.580000 as a fraction
Paul [167]

Answer:

\frac{58}{100}=\frac{29}{50}

Step-by-step explanation:

Since this is mathematics, significant figures are not necessary.  Thus, we can just take 0.58 and delete the 0s.  Now, 0.58=\frac{58}{100}.

6 0
3 years ago
Tax is paid on meals in a restaurant.
liberstina [14]

Answer:

17.52%

Step-by-step explanation:

65.35/11.45 = 0.1752

.1752 * 100

= 17.52

4 0
3 years ago
Which table represents the graph of a logarithmic function in the form y=log3x when b>1?
alex41 [277]

Answer:

<u><em>The satisfied table of the given function</em></u>y = log_{b} (x)<u><em></em></u>

<em>x                    1/8            1/4             1/2              1             2</em>

<em>y                    -3                 -2            -1               0               1</em>

<em></em>

Step-by-step explanation:

<u><em>Explanation</em></u> :-

Given logarithmic function y = log_{b} (x)   if b >1

Given first table

i)

put x = \frac{1}{8}     given b > 1 so we can choose b = 2

y = log_{2} (\frac{1}{8} )

y = log_{2} (2^{-3}  )

we will apply logarithmic formula

log x ⁿ = n log (x)

y = log_{2} (2^{-3}  ) = -3 log_{2} (2) = -3 (1) = -3

<em>y = -3</em>

<em>ii)</em>

<em>put x = </em>\frac{1}{4}<em>     given b > 1 so we can choose b = 2</em>

<em></em>y = log_{2} (\frac{1}{4} )<em></em>

<em></em>y = log_{2} (2^{-2}  )<em></em>

we will apply logarithmic formula

log x ⁿ = n log (x)

y = log_{2} (2^{-2}  ) = -2 log_{2} (2) = -2 (1) = -2

<em>y = -2</em>

<em>iii) </em>

<em>put x = </em>\frac{1}{2}<em>     given b > 1 so we can choose b = 2</em>

<em></em>y = log_{2} (\frac{1}{2} )<em></em>

y = log_{2} (2^{-1}  )

<em>we will apply logarithmic formula </em>

<em>log x ⁿ = n log (x)</em>

y = log_{2} (2^{-1}  ) = -1 log_{2} (2) = - (1) = -1

<em>y = -1</em>

<em>iv) </em>

<em>put x = 1     given b > 1 so we can choose b = 2</em>

<em></em>y = log_{2} (1 )<em> = 0</em>

<em>y = 0</em>

<em>v) </em>

<em>put x = </em>2<em>     given b > 1 so we can choose b = 2</em>

y = log_{2} (2 )

<em>y = 1</em>

<em></em>

<u><em>Final answer:-</em></u>

<u><em>The satisfied table of the given function</em></u>

<em>x                    1/8            1/4             1/2              1             2</em>

<em>y                    -3                 -2            -1               0               1</em>

<em></em>

8 0
3 years ago
Read 2 more answers
Find the max and min values of f(x,y,z)=x+y-z on the sphere x^2+y^2+z^2=81
Anton [14]
Using Lagrange multipliers, we have the Lagrangian

L(x,y,z,\lambda)=x+y-z+\lambda(x^2+y^2+z^2-81)

with partial derivatives (set equal to 0)

L_x=1+2\lambda x=0\implies x=-\dfrac1{2\lambda}
L_y=1+2\lambda y=0\implies y=-\dfrac1{2\lambda}
L_z=-1+2\lambda z=0\implies z=\dfrac1{2\lambda}
L_\lambda=x^2+y^2+z^2-81=0\implies x^2+y^2+z^2=81

Substituting the first three equations into the fourth allows us to solve for \lambda:

x^2+y^2+z^2=\dfrac1{4\lambda^2}+\dfrac1{4\lambda^2}+\dfrac1{4\lambda^2}=81\implies\lambda=\pm\dfrac1{6\sqrt3}

For each possible value of \lambda, we get two corresponding critical points at (\mp3\sqrt3,\mp3\sqrt3,\pm3\sqrt3).

At these points, respectively, we get a maximum value of f(3\sqrt3,3\sqrt3,-3\sqrt3)=9\sqrt3 and a minimum value of f(-3\sqrt3,-3\sqrt3,3\sqrt3)=-9\sqrt3.
5 0
3 years ago
Solve for x <br> triangle abc is similar to triangle aed
3241004551 [841]

Answer:

9/5 or 1.8

Step-by-step explanation:

triangle aed is larger than triangle abc by a scale factor of 5; we know this because side ed is 5 units and cb, the corresponding side in triangle abc, is 1. if ad has a length of 9, the length of ab must be 9 divided by five. thus, z is equal to 9/5 or 1.8.

6 0
3 years ago
Other questions:
  • I have three bill and three coins. They add up to $4.25. What denominations do I have
    5·1 answer
  • I need lots of help on slope! Find the slope and the y-intercept of the line
    8·2 answers
  • F={y | y is an integer and y greater than or equal to 2}
    9·1 answer
  • The perimeter of a square garden is 52 feet. What is the length of each side?
    8·1 answer
  • Reflect the figure over the line y-2.<br><br><br> Please help
    12·1 answer
  • What is the length of side x in the above right triangle​
    7·1 answer
  • If 16*x=1/64, find the value of x
    11·2 answers
  • At school, the maximum number of students that can be in a classroom is 25. If there are 20 students signed up for the chemistry
    13·2 answers
  • Karen says that the equation 3( x - 3) + 5 <br> = 3x + 1 + 4
    13·1 answer
  • Given g(x) = 3 - x, what is the value of g(-9)?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!