Answer:
a) 600 meters
b) between 0 and 10 seconds, and between 30 and 40 seconds.
c) the average of the magnitude of the velocity function is 15 m/s
Explanation:
a) In order to find the magnitude of the car's displacement in 40 seconds,we need to find the area under the curve (integral of the depicted velocity function) between 0 and 40 seconds. Since the area is that of a trapezoid, we can calculate it directly from geometry:
![Area \,\,Trapezoid=(\left[B+b]\,(H/2)\\displacement= \left[(40-0)+(30-10)\right] \,(20/2)=600\,\,m](https://tex.z-dn.net/?f=Area%20%5C%2C%5C%2CTrapezoid%3D%28%5Cleft%5BB%2Bb%5D%5C%2C%28H%2F2%29%5C%5Cdisplacement%3D%20%5Cleft%5B%2840-0%29%2B%2830-10%29%5Cright%5D%20%5C%2C%2820%2F2%29%3D600%5C%2C%5C%2Cm)
b) The car is accelerating when the velocity is changing, so we see that the velocity is changing (increasing) between 0 and 10 seconds, and we also see the velocity decreasing between 30 and 40 seconds.
Notice that between 10 and 30 seconds the velocity is constant (doesn't change) of magnitude 20 m/s, so in this section of the trip there is NO acceleration.
c) To calculate the average of a function that is changing over time, we do it through calculus, using the formula for average of a function:

Notice that the limits of integration for our case are 0 and 40 seconds, and that we have already calculated the area under the velocity function (the integral) in step a), so the average velocity becomes:

Answer:
D) momentum of cannon + momentum of projectile= 0
Explanation:
The law of conservation of momentum states that the total momentum of an isolated system is constant.
In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

Superman was a man who fell of the tree because he was up high at 98m and the. Tried to rescured Annie
If the mass of one object is doubled, the force between these objects will also double.
Force refers to an influence on a body which can change its state of rest or motion.
Force F = G(mM/d^2) (where m is the mass of first object, M is the mass of the second object and G is the gravitational pull and d is the distance between the two objects)
The force between two objects (m and M) (according to the universal law of gravitation) is proportional to their mass and reciprocally proportional to the square of their separation (R) between them.
So F' = G(2mM/d^2),
which means F'=2F
Therefore, the when the mass is doubled, the force also doubles.
To learn more about force, click
brainly.com/question/26115859
#SPJ4