It’s will be B because the circuit had a open or close so if that doesn’t work than it’s because it’s open
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.
Answer:
A) 
B) 
C) 
Explanation:
Given:
- mass of flywheel,

- diameter of flywheel,

- rotational speed of flywheel,

- duration for which the power is off,

- no. of revolutions made during the power is off,

<u>Using equation of motion:</u>



Negative sign denotes deceleration.
A)
Now using the equation:


is the angular velocity of the flywheel when the power comes back.
B)
Here:

Now using the equation:


is the time after which the flywheel stops.
C)
Using the equation of motion:


revolutions are made before stopping.
Answer:
correct answer is Fall slide, slump, creep, flow
Explanation:
solution
we know that Movement of particle under the influence of gravity
so rock and other material move down as gravity.
first rock particle fall down because falls occur very rapidly with high slope after that they slide on the slope and after sliding they slump and it occurs when the rupture surface is curved after slump process they creep.
after creeping, it can flow particle as it occurs slowly with the low slope with water.
so correct answer is Fall slide, slump, creep, flow
Answer:

Explanation:
Using Kepler's third law, we can relate the orbital periods of the planets and their average distances from the Sun, as follows:

Where
and
are the orbital periods of Mercury and Earth respectively. We have
and
. Replacing this and solving for
