1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
11

The work energy principle states that the change in kinetic energy of an object is equal to the net work done on the object. If

you drop an object in class from some height what will the final velocity of the object be? Assume there is no air resistance, and use the insert math equation (sqrt x above) to put in your answer.
Physics
1 answer:
sattari [20]3 years ago
6 0

Answer:

v=\sqrt{2gh}\ m/s

Explanation:

From work energy theorem

Work done by all forces = Change in kinetic energy

Lets take

m= mass of object

h=height from the ground surface

initial velocity of object = 0 m/s

The final velocity of object is v

Work done by gravitational force = m g . h

The final kinetic energy = 1/2 m v²

So

Work done by all forces = Change in kinetic energy

m g h =  1/2 m v² - 0

v² = 2 g h

v=\sqrt{2gh}\ m/s

You might be interested in
The speed of a 180-g toy car at the bottom of a vertical circular portion of track is 7.75 m/s. If the radius of curvature of th
Bezzdna [24]

Answer:

11.28 N toward the center of the track

Explanation:

Centripetal force: This is the force that tend to draw a body close to the center of a circle, during circular motion.

The formula for centripetal force is given as,

F = mv²/r................................ Equation 1

Where F = force, m = mass of the toy car, v = velocity, r = radius

Given: m = 108 g = 0.108 kg, v = 7.75 m/s, r = 57.5 cm = 0.575 m

Substitute into equation 1

F = 0.108(7.75²)/0.575

F = 11.28 N

Hence the magnitude and direction of the force = 11.28 N toward the center of the track

7 0
3 years ago
What is the gravitational force between Mars and the sun? 7.43 × 1030 N 1.79 × 1026 N 1.65 × 1021 N 3.76 × 1032 N
VMariaS [17]

The gravitational force between Mars and the Sun is 1.65\cdot 10^{21} N

Explanation:

The magnitude of the gravitational force between two objects is given by  the equation:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between them

In this problem, we have:

m_1 = 1.99\cdot 10^{30} kg is the mass of the Sun

m_2 = 6.39\cdot 10^{23} kg is the mass of Mars

r=229\cdot 10^6 km = 229\cdot 10^9 m is the average distance Mars-Sun

Substituting into the equation, we find the gravitational force:

F=(6.67\cdot 10^{-11})\frac{(1.99\cdot 10^{30})(6.39\cdot 10^{23})}{(229\cdot 10^9)^2}=1.62\cdot 10^{21} N

So, the closest answer is

1.65\cdot 10^{21} N

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

4 0
3 years ago
At constant volume, the heat of combustion of a particular compound is − 3550.0 kJ / mol. When 1.075 g of this compound ( molar
swat32

Answer:

C=1,25\cdot 10^{5} kJ/^{\circ}C

Explanation:

First of all let's define the specific molar heat capacity.

C = \frac{-Q}{n\cdot \Delta T} (1)

Where:

Q is the released heat by the system

n is the number of moles

ΔT is the difference of temperature of the system  

Now, we can find n with the molar mass (M) the mass of the compound (m).

n=\frac{m}{M}=6.95\cdot 10^{-3} moles      

Using (1) we have:

C=\frac{-3550}{6.95\cdot 10^{-3} 4.073}

C=1,25\cdot 10^{5} kJ/^{\circ}C

I hope it helps!

6 0
3 years ago
A plastic cup weighing 100 g floats on water so that 1/4 of the volume of the cup is immersed in water. How much volume of oil c
k0ka [10]

Answer:

Any floating object displaces a volume of water equal in weight to the object's MASS. ... If you place water and an ice cube in a cup so that the cup is entirely full to the ... If you take a one pound bottle of water and freeze it, it will still weigh one ... Fresh, liquid water has a density of 1 gram per cubic centimeter (1g = 1cm^3, ...

5 0
3 years ago
A power plant produces 1000 MW to suply a city 40Km away.Current flows from the power plant on a single wire of resistance0.050
Westkost [7]

Answer:

The current in wire resistance 2Ω

a). 8696 A

b). fraction power 15.1% a 115kV

Explanation:

Resistance

R=0.05Ω/Km*40km

R=2Ω

P=1000 MW

a).

P=V*I\\I=\frac{P}{V}=\frac{1000x10^{6}W}{115x10^{3}k }  =8696.65A

Using law ohm

b).

V=I*R\\I=\frac{V}{R}

P=I*I*R\\P=I^{2} *R\\P=8696.65^{2}*2\\P=151.228 x10^{6}  W

e=\frac{151.228x10^{6} }{1000x10^{6} }*100= 15.12%

8 0
3 years ago
Other questions:
  • Consult Multiple-Concept Example 15 to review the concepts on which this problem depends. Water flowing out of a horizontal pipe
    9·1 answer
  • According to the universal law of gravitation _____.
    13·2 answers
  • Tech A says that an overdrive gear ratio means the input gear turns faster than the output gear. Tech B says that overdrive rati
    7·1 answer
  • If 2 balls have the same volume, but ball A has twice as much mass as ball B, which one will have the greater density
    10·1 answer
  • An object with a mass of 1.5kg changes its velocity from +15m/s to +22 during a time interval of 3.5 seconds. What Impulse was d
    13·1 answer
  • How would you arrange the objects below from the least to greatest volume?
    5·1 answer
  • Dielectric materials used in the manufacture of capacitors are characterized by conductivities that are small but not zero. Ther
    10·1 answer
  • A Bear moves at a speed of 8 m/s for a distance of 300 m. How long does it take the Bear to travel this distance?
    8·1 answer
  • HURRY PLEASE
    13·1 answer
  • A mercury manometer is connected to a container of gas. (a) The height of the mercury column on the side connected to the gas is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!