The critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881
<h3>How to determine the critical values corresponding to a 0.01 significance level?</h3>
The scatter plot of the election is added as an attachment
From the scatter plot, we have the following highlights
- Number of paired observations, n = 8
- Significance level = 0.01
Start by calculating the degrees of freedom (df) using
df =n - 2
Substitute the known values in the above equation
df = 8 - 2
Evaluate the difference
df = 6
Using the critical value table;
At a degree of freedom of 6 and significance level of 0.01, the critical value is
z = 0.834
From the list of given options, 0.834 is between -0.881 and 0.881
Hence, the critical values corresponding to a 0.01 significance level used to test the null hypothesis of ρs = 0 is (a) -0.881 and 0.881
Read more about null hypothesis at
brainly.com/question/14016208
#SPJ1
The side is (2x+3)? then the area is:
(2x+3)(2x+3) = 4 x^2 + 12 x + 9 if x = 6 then
Area = 4(36)+12(6)+9
= 144 + 72 + 9
= 225, too big :(
Answer:

Step-by-step explanation:
Given:
Focus point = (-5, -4)
Vertex point = (-5, -3)
We need to find the equation for the parabola.
Solution:
Since the x-coordinates of the vertex and focus are the same,
so this is a regular vertical parabola, where the x part is squared. Since the vertex is above the focus, this is a right-side down parabola and p is negative.
The vertex of this parabola is at (h, k) and the focus is at (h, k + p). So, directrix is y = k - p.
Substitute y = -4 and k = -3.



So the standard form of the parabola is written as.

Substitute vertex (h, k) = (-5, -3) and p = -1 in the above standard form of the parabola.
So the standard form of the parabola is written as.


Therefore, equation for the parabola with focus at (-5,-4) and vertex at (-5,-3)

3x^2 − 6x + 2 - (<span>5x − 6)
= </span>3x^2 − 6x + 2 - 5x + 6
= 3x^2 - 11x + 8
hope it helps