Answer:
0.688 or 68.8%
Step-by-step explanation:
Percentage of high school dropouts = P(D) = 9.3% = 0.093
Percentage of high school dropouts who are white =
= 6.4% = 0.064
We need to find the probability that a randomly selected dropout is white, given that he or she is 16 to 17 years old. This is conditional probability which can be expressed as: P(W | D)
Using the formula of conditional probability, we ca write:

Using the values, we get:
P( W | D) = 
Therefore, the probability that a randomly selected dropout is white, given that he or she is 16 to 17 years old is 0.688 or 68.8%
Expand the following:
(5 a + b/5)^2
(5 a + b/5) (5 a + b/5) = (5 a) (5 a) + (5 a) (b/5) + (b/5) (5 a) + (b/5) (b/5):
5×5 a a + (5 a b)/5 + (5 b a)/5 + (b b)/(5×5)
(5 a b)/5 = 5/5×a b = a b:
5×5 a a + a b + (5 b a)/5 + (b b)/(5×5)
(b×5 a)/5 = 5/5×b a = b a:
5×5 a a + a b + b a + (b b)/(5×5)
Combine powers. (b b)/(5×5) = (b^(1 + 1))/(5×5):
5×5 a a + a b + b a + (b^(1 + 1))/(5×5)
1 + 1 = 2:
5×5 a a + a b + b a + (b^2/5)/5
5 a×5 a = 5×5 a^2:
5×5 a^2 + a b + b a + (b^2/5)/5
5×5 = 25:
Answer: 25 a^2 + a b + b a + (b^2/5)/5
Answer: uhh no but thanks for the points
Step-by-step explanation:
Answer: See below
Step-by-step explanation:
A) 


Multiply both sides by -1 and reverse the inequality:


B) 




The answer is 7.3. Hope that helps.