z-score of a company is 5.
What is z- test?
A z-test is a statistical test used to determine whether two population means are different when the variances are known and the sample size is large.
The annual salaries of all employees at a financial company are normally distributed with a mean of $34,000 and a standard deviation of $4,000.
Now, using z- score
z= (x-
)/
z= 54000- 34000/ 4000
z= 20000/4000
z=5.
Hence, z-score of a company is 5.
Learn more about this concept here:
brainly.com/question/1546834
#SPJ1
Answer:
1579
Step-by-step explanation:
There is a particular formula you must use and it leads to this 420(1 + 0.18)^8=1579
M = (y2-y1)/(x2 -x1)
m = (7 -2)/(5 - 1)
m = 5/4
answer: slope m = 5/4
Answer:
ok, i hate questions like these because i don't want to answer them
Step-by-step explanation:
Answer:
You didn't add a specific time frame so I can you a correct answer.
Explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣄⠄⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣿⣿⣿⣿⣷⡒⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⡀⣹⣿⣿⣿⣿⣿⣯⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣀⣀⣴⣿⣿⣿⣿⣿⣿⠿⠋⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣀⣤⣶⣾⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄ ⠄⡶⣶⡿⠛⠛⠉⠉⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠘⠃⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣤⣾⣷⣿⣿⣿⣿⡏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⠂⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⢀⣤⣴⣾⣿⣿⣿⣿⡿⠛⠻⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠸⣿⣿⣿⣿⠋⠉⠄⠄⠄⠄⣼⣿⣿⡿⠇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠈⠻⣿⣿⣆⠄⠄⠄⠄⠄⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠻⣿⣿⣆⡀⠄⠄⠈⠻⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣌⣿⣿⣿⣦⡄⠄⠄⠄⠙⠻⣿⣿⣦⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠁⠄⠄⠄⠄⠄⠄⠄⠘⠻⣿⢿⢖⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣴⣧⣤⣴⡖⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣷⣀⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠈⠘⠻⢿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⢤⣴⣦⣄⣀⣀⣴⣿⡟⢿⣿⡿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠉⠉⠙⠻⠿⣿⡿⠋⠄⠈⢀⣀⣠⣾⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠉⠋⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⠛⠛⣿⣿⣿⣿⣿⣿⣇⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠿⢛⣿⣿⣿⣿⣷⣤⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣶⣷⣿⣿⡉⠄⠄⠄⠄⠉⠉⠉⠉⠉⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⠛⠟⢿⣤⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⠄⣠⣶⣶⣷⣿⣶⡊⠄⠄⣀⣤⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣴⣶⣾⢿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢸⣿⡍⠁⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⠏⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⣿⣡⣶⣶⣄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣀⣠⣴⣦⡤⣿⣿⣿⣿⡻⣿⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢻⣿⣿⡏⠉⠙⠛⢛⣿⣿⣿⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢿⣿⡧⠄⠄⢠⣾⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⣿⣿⣄⣼⣿⣿⣿⠏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠸⡿⣻⣿⣿⣿⣿⣆⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣻⠟⠈⠻⢿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠿⠍⠄⠄⠄⠄⠉⠻⣿⣷⡤⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⡿⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠸⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣶⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣾⣿⣿⣿⣿⣿⡞⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⡿⢃⡀⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣿⣿⣿⣿⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢈⣽⣿⣿⣿⣿⣿⣿⣿⢿⣷⣦⣀⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⠄⢉⣻⣿⡇⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⡉⣀⣿⣿⣿⣿⣋⣴⣿⠟⠋⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣠⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢀⣀⣼⣿⣿⣿⣿⣿⣿⠿⢿⣿⣿⣿⣿⣿⣮⡠⠄⠄⠄⠄ ⠄⠄⠄⠄⢰⣾⣿⣿⡿⠿⠛⠛⠛⠉⠄⠄⠄⠄⠙⠻⢿⣿⣿⣿⣶⣆⡀⠄ ⠄⠄⠄⠄⠄⠹⣿⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢉⣿⣿⣿⣿⣿⠂ ⠄⠄⠄⠄⠄⠄⠈⢿⣿⣇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣾⣿⡿⠟⠉⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠂⢿⣿⣥⡄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠟⠋⠁⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣤⣾⣿⣿⣷⣿⣃⡀⢴⣿⣿⡿⣿⣍⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠉⠉⠄⠄⠄⠉⠙⠛⠛⠛⠛⠂⠄⠄⠄⠄⠄