Answer:
The current pass through the coil is 6.25 A
Explanation:
Given that,
Diameter = 25 cm
Magnetic field = 1.0 mT
Number of turns = 100
We need to calculate the current
Using the formula of magnetic field


Where, N = number of turns
r = radius
I = current
Put the value into the formula


Hence, The current passes through the coil is 6.25 A
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Answer:
It controls the amount of current.
Explanation:
A resistor helps control and maintain the circuit which is it's main function.
One thing you should notice. It is kind of weird. Ke has no direction so that fact that it has velocities associated with it does not matter. It becomes a scaler (something measured by amount alone).
General Formula
Ke = 1/2 m v^2
Formula for this problem
Ke = 1/2 m (v2)^2 - 1/2 m (v1)^2
Givens
m = 1200 kg
v2 = 100 km/hr = 100 km/h * [1 hour / 3600 sec] * [1000 m/ 1km] = 27.8 m/s
v1 = 50 km / hr = 13.9 m/s
Substitution and work.
================
delta Ke = 1/2 1200 (27.8)^2 - 1/2 1200 (13.9)^2
delta Ke = 463704 - 115926
delta Ke = 34778 Joules
delta Ke = 34.8 kJ
The change is 34.8 kJ which means that the vehicle gains 34.8 kJ