Answer:
Its length is measured to be 0.5 m
Explanation:
From theory of relativity (mass variation), we know that:
m = mo/√(1-v²/c²)
Where, m = relative mass
and, mo = rest mass
The momentum of stick while moving, will be:
P = mv
but, it is given in the form of rest mass as:
P = 2(mo)v
thus, by comparison;
2(mo)v = mv
using value of m from theory of relativity;
2(mo)v = (mo)v/√(1-v²/c²)
√(1-v²/c²) = 1/2 ______ eqn(1)
Now, for relativistic length (L), we have the formula from same theory of relativity;
L = (Lo)√(1-v²/c²)
The rest length (Lo) of meter stick is 1 m, and the remaining term on right side √(1-v²/c²), known as Lorentz Factor, can be given by eqn (1), as equal to 1/2.
Thus,
L = (1 m)(1/2)
<u>L = 0.5 m</u>
I think true. I'm pretty sure, but check w/ others too.
If the scientist repeats the experiment over and over and gets the same results. Also if the scientist peer reviews the experiment to make sure there is no bias in his or her results.
The image of the water tower and the houses is in the attachment.
Answer: (a) P = 245kPa;
(b) P = 173.5 kPa
Explanation: <u>Gauge</u> <u>pressure</u> is the pressure relative to the atmospheric pressure and it is only dependent of the height of the liquid in the container.
The pressure is calculated as: P = hρg
where
ρ is the density of the liquid, in this case, water, which is ρ = 1000kg/m³;
When it is full the reservoir contains 5.25×10⁵ kg. So, knowing the density, you know the volume:
ρ = 
V = ρ/m
V = 
V = 525 m³
To know the height of the spherical reservoir, its diameter is needed and to determine it, find the radius:
V = 
![r = \sqrt[3]{ \frac{3}{4\pi } .V}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%7D%7B4%5Cpi%20%7D%20.V%7D)
r = ![\sqrt[3]{\frac{525.3}{4\pi } }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B525.3%7D%7B4%5Cpi%20%7D%20%7D)
r = 5.005 m
diameter = 2*r = 10.01m
(a) Height for House A:
h = 15 + 10.01
h = 25.01
P = hρg
P = 25.01.10³.9.8
P = 245.10³ Pa or 245kPa
(b) h = 25 - 7.3
h = 17.71
P = hρg
P = 17.71.1000.9.8
P = 173.5.10³ Pa or 173.5 kPa
Answer:
option D
Explanation:
five
hope it helps you and Mark me down as brainlist