The spiral structure of the milky way can be explained by long lived quasi-static density waves<em>, </em><em>according to the lin-shu hypothesis. </em>Curiously, the waves of higher density gas and stars (seen as spiral arms) appear to remain static as stars move around the galaxy. This explained by assuming that the gravitational disturbances cause by the 'clumping' material in the arms does not affect the gravitational field of the galaxy as whole and is therefore negligible.
source: Astrophysicist
Answer:
Mechanical waves need matter to transfer energy while electromagnetic waves do not. ... Waves change direction when they move from one material into another (matter) through the process of refraction. The wave will change direction when the speed of the wave changes.
Answer:
hello the diagram related to this question is missing attached below is the missing diagram
Answer :
The magnitude of the electric field = 4KQ / L^2
direction = 45° east to south
Explanation:
The magnitude of the electric field = 4KQ / L^2
direction = 45° east to south
<span>Assuming that the momenta of the two pieces are equal: when they have equal velocities, then
the masses of the two pieces are also equal.
Since there is no force from outside of the system, the center of mass moves on with the same velocity as before the equation. So the two pieces must fly at the side side of the mass center, i.e., they must always be at 90° to the side of the mass center. Otherwise it would not be the mass center, respectively the pieces would not have equal velocities.
This is only possible, when the angle of their velocity with the initial direction is 60°.
Because, cos (60°) = 1/2 = v/(2v).</span>
Answer:
h = 16.67m
Explanation:
If the kinetic energy of the cylinder is 510J:


Where the inertia is given by:

Replacing this value:

Speed of the block will therefore be:

By conservation of energy:
Eo = Ef
Eo = 0

So,

Solving for h we get:
h=16.67m