Answer:
Velocity of Object with 2 kg= 3.390 m/s
Velocity of Object with 3 kg= 3.404 m/s
Explanation:
From the picture, it can be seen that object B is initially at rest while object A is travelling at a speed of 5m/s. After the collision, Object A moves at an angle of 65 degrees while object B moves at an angle of 37 degrees.
We also know that momentum of a closed system is conserved.
Initial momentum along the x-axis = 2*5.5 = 11
Initial momentum along y-axis = 0
Final momentum along x-axis= a*Cos(65)*2 +b*Cos(37) *3= 11 (a is the velocity of object A of 2 kg after collision where as b is the velocity of object B of 3 kg after collision. velocity is multiplied by cosines of the angle from x axis to give the horizontal component of the velocities).
Final momentum along y-axis = a*Sin(65)*2 - b*Sin(37)*3 =0 (We can see that vertical components of velocity are opposite in direction to each other)
Solve both the equations simultaneously for a and b.
Kinetic, thermal and electrical. There is more then one form of energy
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
Answer: Both of the compounds contain primary bonding; however, the bonding is of different types. Magnesium chloride (MgCl₂) contains ionic bonds, which are stronger and involve the complete transfer of electrons. Meanwhile, ethane (C₂H₆) also bonds by electron transfer but the electrons are not completely transferred from one atom to another. Instead, they are shared, forming what is known as a covalent bond.