Y-intercept: Let x = 0. Result: 5x=0, and x= 0. y-intercept is (0,0).
Similarly, x-int. is (0,0) (after going thru the same procedure: set y=0 and find x)
Answer:
m∠3 = 64°
Since angle 2 and 3 seem to be complementary angles, we know that the meaning of complementary angles is to add both angles to 90 degrees.
Subtract 90 by the known value to get the value of ∠3
90 - 26 = 64
Answer:
a) The function is constantly increasing and is never decreasing
b) There is no local maximum or local minimum.
Step-by-step explanation:
To find the intervals of increasing and decreasing, we can start by finding the answers to part b, which is to find the local maximums and minimums. We do this by taking the derivatives of the equation.
f(x) = ln(x^4 + 27)
f'(x) = 1/(x^2 + 27)
Now we take the derivative and solve for zero to find the local max and mins.
f'(x) = 1/(x^2 + 27)
0 = 1/(x^2 + 27)
Since this function can never be equal to one, we know that there are no local maximums or minimums. This also lets us know that this function will constantly be increasing.
Solving a system of linear equations, we conclude that the measure of side Z is 2√13
<h3>How to find the measure of side Z?</h3>
Remember the Pythagorean theorem. It says that the square of the hypotenuse is equal to the sum of the squares of the legs.
In the image, we can identify 3 right triangles, and with the Pythagorean theorem, we can write a system of 3 equations.
x^2 = y^2 + 4^2
z^2 = y^2 + 9^2
(4 + 9)^2 = z^2 + x^2
We want to solve that for z.
Now, the second equation can be rewritten to:
y^2 = z^2 - 9^2
Now let's replace the first equation into the third one, so we get:
(4 + 9)^2 = z^2 + (y^2 + 4^2)
Now we can replace y^2 by z^2 - 9^2
(4 + 9)^2 = z^2 + ((z^2 - 9^2) + 4^2)
Now we can solve this:
(13)^2 = z^2 + z^2 - 9^2 + 4^2
(13)^2 + 9^2 - 4^2 = 2*z^2
104/2 = z^2
52 = z^2
√52 = z
√(4*13) = z
√4*√13 = z
2√13 = z
We conclude that the measure of side Z is 2√13
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
Answer:
A = 9
B = 2
C = 5
D = 1
E = 8
F = 7
Step-by-step explanation:
A 9 B 2 C 5 = 16
D 1 E 8 F 7 = 16
10 10 12
BxC (2x5) = 10
A+D (9+1) = 10