Answer:
Option A
Explanation:
An intensive property is a bulk property, meaning that it is a local physical property of a system that does not depend on the system size or the amount of material in the system. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness of an object,specific heat, η.
Physical properties can be observed or measured without changing the composition of matter. Physical properties are used to observe and describe matter. Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, specific heat and many others.
Then we all die because the sun would blow up the earth.
Partial pressure=mole fraction×Pt
x=0.044÷44(maolarmass of CO2)×Pt
x=0.044÷(44)2×Pt
x=5×10^-4×Pt
x=5×10^-4×Pt
where Pt:1atm=760mmHg
xatm=750mmHg
750×1÷760=0.99
now;5×10^-4×099=4.95×10^-4.
Pt=4.95×10^-4
When a water vapor condenses, heat is being released from the process. This heat is called latent heat of vaporization since the phase change happens without any change in the temperature. This value is constant per mole of a substance as a function of pressure and temperature. For this problem, we are given the heat of vaporization at a certain T and P. We use this value to calculate the total heat released from the process. We calculate as follows:
Total heat released: 32.4 g ( 1 mol / 18.02 g ) (40.67 kJ / mol) = 73.12 kJ
Therefore, 73.12 kJ of heat is released from the condensation of 32.4 g of water vapor.
%C= 12/12 + 2·16=0,273=27,3%.