The atomic number of Li is 3
Electron configuration of Li : 1s² 2s¹
The atomic number of Na is 11
Electron configuration of Na : 1s²2s²2p⁶3s¹
Thus there is one electron in the valence shell of Li (2s¹) and that of Na (3s¹). However, the valence electron in Na is in a shell that is farther away from the nucleus compared to that of Li. As a result, the Na valence electron will be held less tightly by the nucleus i.e. it will experience a reduced nuclear attraction and can be removed easily than the Li 2s electron.
Answer:
1. 25%
2. 1.25
3. 1
Explanation:
Be sure to look at the x and y axis to answer these questions. All you need to do is look at the graph.
- Hope that helps! Please let me know if you need further explanation.
Answer: option D. The attractive forces between the sodium and chloride ions are overcome by the attractive forces between the water and the sodium and chloride ions.
Explanation:
<em>Solid sodium chloride</em> (NaCl) is a ionic compound formed by ionic bonds between by the positive, metallic cations of sodium atom, Na⁺, and the negative, non-meatllic anions of chlorine atom, Cl⁻ (chloride).
Ionic bonds, then, are the electrostatic attracion between oppositely charged particles (cations and anions).
<em />
<em>When solid sodium chloride dissolves in water</em>, the ions (cations and anions) are separated in the solvent (water) due to the superior attracitve forces between such ions and the polar water molecules.
<em>Water</em> (H₂O) is a molecule, formed by polar covalent bonds between two hydrogen atoms and one oxygen atom.
The polarity of water molecule is due to the fact that oxygen atoms are more electronegative than hydrogen atoms, which cause that the electron density is closer to oxygen nuclei than to hydrogen nuclei. This asymmetry in the electron density conferes a partial positive charge over each hydrogen atom and a partial negative charge over the oxygen atoms.
Thus, the positively charged hydrogen atoms attract and surround the negative chloride (Cl⁻) anions, while the negatively charged oxygen atoms attract and surround the positive sodium (Na⁺) cations. It is only because the attractive forces between the water and the sodium and chloride ions are stronger than the attractive forces between the sodiium and chloride ions that such ions may be kept separated in the solution. This process is called solvation and the ions are said to be solvated by the water molecules.
Answer:In determining the energy of activation, why was it prudent to run the slowest trial done at room temperature in the hot water bath and the fastest trial done at room temperature in the cold water bath?
Explanation: