Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
What's the problem ? Hardness is not the definition of a metal.
You need to expand your thinking. EVERY element is solid, liquid, and gas, over different ranges of temperature ... including all of the metals. There are only TWO elements that are liquid AT ROOM TEMPERATURE, and mercury is one of them. But on a mild day at the south pole, mercury is solid too.
Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit = 

Energy of 10th orbit = 

Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.


(Planck's' equation)


The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
I believe 212.5m, but I may be wrong, I’m a little rusty with moles