Answer:

Explanation:
![\rm MX(s) $\, \rightleftharpoons \,$ M$^{+}$(aq) + $^{-}$(aq); $K_{\text{sp}}$ = [M$^{+}$][X$^{-}$]\\\\\text{$K_{\text{sp}}$ gives us information on}\\\\\boxed{\textbf{ the equilibrium between the solid and its ions in solution}}](https://tex.z-dn.net/?f=%5Crm%20MX%28s%29%20%24%5C%2C%20%5Crightleftharpoons%20%5C%2C%24%20M%24%5E%7B%2B%7D%24%28aq%29%20%2B%20%24%5E%7B-%7D%24%28aq%29%3B%20%24K_%7B%5Ctext%7Bsp%7D%7D%24%20%3D%20%5BM%24%5E%7B%2B%7D%24%5D%5BX%24%5E%7B-%7D%24%5D%5C%5C%5C%5C%5Ctext%7B%24K_%7B%5Ctext%7Bsp%7D%7D%24%20gives%20us%20information%20on%7D%5C%5C%5C%5C%5Cboxed%7B%5Ctextbf%7B%20the%20equilibrium%20between%20the%20solid%20and%20its%20ions%20in%20solution%7D%7D)
It tells us nothing about the amount of precipitate that will form or the temperature at which the equilibrium occurs.
A. False. If it is high tide in one place on Earth, the place exactly opposite to it will also have a <em>high</em> tide.
The gravitational attraction of the Moon and the inertia of the oceans cause <em>two tidal bulges </em>on opposite sides of the Earth.
B. True. Cassini used flybys of Venus, Earth and Jupiter as slingshots to reach Saturn.
C. True. The whole solar system moves around the galaxy.
D. True. If a planet’s gravity is not strong enough, the molecules in its atmosphere will have enough kinetic energy to escape into space.
E. False. The <em>mass of an object is constant</em>, but its <em>weight changes</em> according to the gravity of the planet.
F. False. To find the mass of an object, <em>divide</em> its weight by gravity.
or weight = mass × gravity
∴ <em>Mass = weight/gravity
</em>
Explanation:
Both cohesion and molecular interchange contribute to liquid viscosity. The impact of increasing the temperature of a liquid is to reduce the cohesive forces while simultaneously increasing the rate of molecular interchange. The former effect causes a decrease in the shear stress while the latter causes it to increase.
temperature?
The viscosity of liquids decreases rapidly with an increase in temperature, and the viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow more easily, whereas gases flow more sluggishly.
mark as brainliest
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution to this question is shown on the second uploaded image
Explanation: