<h3><u>Answer</u>;</h3>
B.The rate of forward reaction increases.
<h3><u>Explanation;</u></h3>
- Le Chatelier's principle states that changing a factor such as concentration, temperature, or pressure of a reaction at equilibrium will cause the reaction to shift in the direction that counteracts the effect of that change.
- <em><u>Therefore, when reactants are added to a reaction at equilibrium shift when more reactants are added then the reaction shifts to the right to make more products.</u></em>
Salts is the correct awnser
Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J
166.4 g Ag grams of silver can be produced from 49.1 g of copper.
<h3>What is a mole?</h3>
A mole is a very important unit of measurement that chemists use. A mole of something means you have 602,214,076,000,000,000,000,000 of that thing, like how having a dozen eggs means you have twelve eggs.
→ 
63.55 g Cu —> 2 x 107.688 g Ag
63.55 g Cu gives 215.376 g of Ag
So, 49.1 g Cu —> 
= 166.4 g Ag
Hence, 166.4 g Ag grams of silver can be produced from 49.1 g of copper.
Learn more about moles here:
brainly.com/question/26416088
#SPJ1
Reaction rates can be increased if the concentration of reactants is raised. An increase in concentration produces more collisions. The chances of an effective collision goes up with the increase in concentration. The exact relationship between reaction rate and concentration depends on the reaction "mechanism".