Answer:
jfjcgufnfhfufm TV fifnricnrhkddufnfif km fgkfkvntfmrugrhfifnh r
I think u should follow the formulae F=MA. So I think the answer is 120N
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Materials required for the experiment of limiting force borne by string:-
- String balance
- weights
- light strings
- weight hanger
- pan for spring balance
- Sand
Steps of procedure for for the experiment of limiting force borne by string:-
- First we have to tie a light string to the fixed support and then tie the other end with the weight hanger consists of weight.
- Add additional weight to the hanger again and again. And continue the same until the string is broken.
- Note down the weight (x) where the string is broken.
- Suspend spring balance to a support.
- Tie the light string at the end of the balance and at the other end suspend the pan for spring balance.
- Now place the weights (x-100 grams) in pan.
- Observe the reading in the spring balance.
- Add a small amount of sand in the pan by observing the readings.
- same is to be done till the string is broken.
Learn more about limiting force here:- brainly.com/question/11371672
#SPJ1
Answer:
stone A is diamond.
Explanation:
given,
Volume of the two stone = 0.15 cm³
Mass of stone A = 0.52 g
Mass of stone B = 0.42 g
Density of the diamond = 3.5 g/cm³
So, to find which stone is gold we have to calculate the density of both the stone.
We know,


density of stone A


density of stone B.


Hence, the density of the stone A is the equal to Diamond then stone A is diamond.