1 answer:
Answer:
Let coordinates of vertex D be (x,y)
In parallelogram diagonals are bisect each other.
∴ Mid-point of AC= Mid-point of BD
⇒ (
2
3+(−6)
,
2
−4+2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,
2
−2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,−1)=(
2
−1+x
,
2
−3+y
)
Now,
⇒
2
−3
=
2
−1+x
⇒ −6=−2+2x
⇒ −4=2x
∴ x=−2
⇒ −1=
2
−3+y
⇒ −2=−3+y
⇒ 1=y
∴ y=1
∴ Coordinates of vertex D is (−2,1)
You might be interested in
Answer: c < 19
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given D (7, -3) and D'(2, 5).
the transformation
D'(x,y) → D(x-5, y+8).
Then
x=7 → x=7-5 = 2
y=-3 → y=-3+8 = 5
Answer:
The answer is 95
Step-by-step explanation:
You do the sum backwards,
36-16=17
17x3=51
Then you check it to make sure,
51/3=17
17+19=36
:) hope this hepled x