A) 1
B) 10/3
C) 6
D) 18/5
So only C is bigger than 4
3xy
<span>y(3y)/3xy + y(xy)/3xy + (y+1)(3x)/3xy </span>
<span>NOW since all of the fractions have a denominator of 3xy, drop the denominators and solve using the numerators. </span>
<span>y(3y) + y(xy) + (y+1)(3x) </span>
<span>3y^2 + xy^2 + 3xy +3x </span>
<span>cannot simplify further.</span>
1,250 is more then 1.25 because it’s a greater number
36 feet of carpet cause its a square so 6x6 is 36
Answer:
B
Step-by-step explanation:
Find all probabilities:
A. False
![Pr(\text{red shirt}|\text{large shirt})=\dfrac{\text{number red large shirts}}{\text{number large shirts}}=\dfrac{42}{77}=\dfrac{6}{11}\\ \\Pr(\text{large shirt})=\dfrac{\text{number large shirts}}{\text{number shirts}}=\dfrac{77}{165}=\dfrac{7}{15}](https://tex.z-dn.net/?f=Pr%28%5Ctext%7Bred%20shirt%7D%7C%5Ctext%7Blarge%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20red%20large%20shirts%7D%7D%7B%5Ctext%7Bnumber%20large%20shirts%7D%7D%3D%5Cdfrac%7B42%7D%7B77%7D%3D%5Cdfrac%7B6%7D%7B11%7D%5C%5C%20%5C%5CPr%28%5Ctext%7Blarge%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20large%20shirts%7D%7D%7B%5Ctext%7Bnumber%20shirts%7D%7D%3D%5Cdfrac%7B77%7D%7B165%7D%3D%5Cdfrac%7B7%7D%7B15%7D)
B. True
![Pr(\text{blue shirt}|\text{large shirt})=\dfrac{\text{number blue large shirts}}{\text{number large shirts}}=\dfrac{35}{77}=\dfrac{5}{11}\\ \\Pr(\text{blue shirt})=\dfrac{\text{number blue shirts}}{\text{number shirts}}=\dfrac{75}{165}=\dfrac{5}{11}](https://tex.z-dn.net/?f=Pr%28%5Ctext%7Bblue%20shirt%7D%7C%5Ctext%7Blarge%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20blue%20large%20shirts%7D%7D%7B%5Ctext%7Bnumber%20large%20shirts%7D%7D%3D%5Cdfrac%7B35%7D%7B77%7D%3D%5Cdfrac%7B5%7D%7B11%7D%5C%5C%20%5C%5CPr%28%5Ctext%7Bblue%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20blue%20shirts%7D%7D%7B%5Ctext%7Bnumber%20shirts%7D%7D%3D%5Cdfrac%7B75%7D%7B165%7D%3D%5Cdfrac%7B5%7D%7B11%7D)
C. False
![Pr(\text{shirt is medium and blue})=\dfrac{\text{number medium and blue shirts}}{\text{number shirts}}=\dfrac{48}{165}=\dfrac{16}{55}\\ \\Pr(\text{medium shirt})=\dfrac{\text{number medium shirts}}{\text{number shirts}}=\dfrac{88}{165}=\dfrac{8}{15}](https://tex.z-dn.net/?f=Pr%28%5Ctext%7Bshirt%20is%20medium%20and%20blue%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20medium%20and%20blue%20shirts%7D%7D%7B%5Ctext%7Bnumber%20shirts%7D%7D%3D%5Cdfrac%7B48%7D%7B165%7D%3D%5Cdfrac%7B16%7D%7B55%7D%5C%5C%20%5C%5CPr%28%5Ctext%7Bmedium%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20medium%20shirts%7D%7D%7B%5Ctext%7Bnumber%20shirts%7D%7D%3D%5Cdfrac%7B88%7D%7B165%7D%3D%5Cdfrac%7B8%7D%7B15%7D)
D. False
![Pr(\text{large shirt}|\text{red shirt})=\dfrac{\text{number red large shirts}}{\text{number red shirts}}=\dfrac{42}{90}=\dfrac{7}{15}\\ \\Pr(\text{red shirt})=\dfrac{\text{number red shirts}}{\text{number shirts}}=\dfrac{90}{165}=\dfrac{6}{11}](https://tex.z-dn.net/?f=Pr%28%5Ctext%7Blarge%20shirt%7D%7C%5Ctext%7Bred%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20red%20large%20shirts%7D%7D%7B%5Ctext%7Bnumber%20red%20shirts%7D%7D%3D%5Cdfrac%7B42%7D%7B90%7D%3D%5Cdfrac%7B7%7D%7B15%7D%5C%5C%20%5C%5CPr%28%5Ctext%7Bred%20shirt%7D%29%3D%5Cdfrac%7B%5Ctext%7Bnumber%20red%20shirts%7D%7D%7B%5Ctext%7Bnumber%20shirts%7D%7D%3D%5Cdfrac%7B90%7D%7B165%7D%3D%5Cdfrac%7B6%7D%7B11%7D)